
DataPA Development
for Openedge Developers

Part 1

© DataPA

DataPA Developer

Lesson 1
Course Overview

Course Overview

Introduction
This course covers the skills and knowledge required to develop applications which use DataPA
OpenAnalytics to enhance their functionality.

Audience
The course is intended for developers who will either develop or maintain applications which use
DataPA OpenAnalytics. The course will not cover the administration of DataPA OpenAnalytics, the
Progress AppServer’s or the use of the product itself. These topics are covered in other courses.

Prerequisites
Students should be familiar with one of the development tools which are covered in this course which
are the Progress AppBuilder, Microsoft Visual Studio or OpenEdge Architect.

DataPA Developer

1

© DataPA

What are your goals?

 Think about what you would like to learn from
this course

 Introduce yourself

Student Goals
Please take a few moments to document your own goals for this course. What will you need to know
and/or produce when you return to work?

What are the three things you most want to know about DataPA?

Please introduce yourself by answering the following questions

1. Your Name and Job

2. Your experience with Progress and DataPA OpenAnalytics

3. What you would like to learn from this course

DataPA Developer

2

© DataPA

Course Goals

> Understand the concepts behind developing with DataPA OpenAnalytics

> Understand how to use the DataPA Report Controls

> Understand how to use the DataPA Enterprise Dashboard Control

> Understand how to use the DataPA OpenAnalytics automation objects

> Understand how to programmatically set parameter values

> Understand how to programmatically maintain parameters

> Implement DataPA OpenAnalytics security from an application

> Understand how to use DataPA Application events

> Use calls to DataPA Enterprise to run reports and queries

Course Goals
When you complete this course you should be able to:

 Understand the concepts behind developing with DataPA OpenAnalytics
 Understand how to use the DataPA Report Controls
 Understand how to use the DataPA Enterprise Dashboard Control
 Understand how to use the DataPA OpenAnalytics automation objects
 Understand how to programmatically set parameter values
 Understand how to programmatically maintain parameters
 Implement DataPA OpenAnalytics security from an application
 Understand how to use DataPA Application events
 Use calls to DataPA Enterprise to run reports and queries

DataPA Developer

3

Lesson Overview
Lesson What is covers

Lesson 1: Course Overview Introductory material about this course.

Lesson 2: Introducing the concepts An introduction to the concepts used in the
course and a look at some of the best practise
recommendations.

Lesson 3: DataPA Reports Control A detailed look at using the DataPA Reports
Control to design, view, run, print, export, open,
save and close reports from your application.

Lesson 4: DataPA Enterprise Dashboard Control A detailed look at using the DataPA Enterprise
Dashboard Control to design, view, refresh data
and save settings from your application.

Lesson 5: DataPA Application Object A detailed look at using the DataPA application
object to control the queries behind the reports
you are using from your application.

Lesson 6: Managing Query Parameters A detailed look at how to manipulate DataPA
Query parameters from your application to
control the data shown on the reports.

Lesson 7: Setting Security Information A look at how to set the security context for a
user of your application.

Lesson 8: Using DataPA Application Events A look at how you can respond to DataPA
Application events from your application.

Lesson 9: Using DataPA Enterprise A look at how use DataPA Enterprise from your
application.

DataPA Developer

4

© DataPA

DataPA Developer

Lesson 2
Introducing the concepts

Introducing the concepts

Introduction
DataPA Developer allows developers to embed the full functionality of DataPA into their client
applications and this lesson will lay out some of key concepts behind using DataPA in this way
together with some of the best practice recommendations for developing your application with
DataPA.

Learning Objectives
When you complete this lesson you should be able to:

 Explain DataPA concepts behind using DataPA in your application.
 Understand the best practice recommendations and why they are important.

Prerequisites
Before you begin this lesson you should be able to:

 Develop an application in your chosen development environment.

DataPA Developer

5

© DataPA

DataPA
Application &
ClientConfig

Objects

DataPA Developer Concepts

AppServer
DB Server

Client
Application

Server

Visual Non Visual

DataPA
Enterprise

Dashboard/
Reports

DataPA Developer Concepts
In order to define understand how DataPA OpenAnalytics works it is important to know the principle
components which DataPA OpenAnalytics uses to allow dashboards, reports and queries to be run
from client applications.

DataPA Enterprise Dashboard Object
The DataPA Enterprise Dashboard Control is a visual object which can be dropped onto a form in a
client application. This Control allows the developer to embed both dashboard design and preview
functionality into their application. It has an API (Application Programming Interface) available for the
developer to use to control many aspects of the behaviour of the control.

For applications developed using the Progress AppBuilder the DataPA Enterprise Dashboard Control is
an ActiveX control that can be added to Progress windows in the same way as other OCX controls.

For applications developed using Visual Studio or OpenEdge Architect the DataPA Enterprise
Dashboard Control is a .NET control that can be added to a .NET form or an ABL Form in OpenEdge
Architect.

The OCX version of the DataPA Enterprise Dashboard control has the same API the .NET version,
however due to the restrictions of the older COM interface, some of the properties or methods
cannot be used in the COM interface. For these properties or methods, alternative COM versions of
the properties or methods are available.

DataPA Reports Control
The DataPA Report Control is a visual object which can be dropped onto a form in a client application.
This Control allows the developer to embed both report design and preview functionality into their
application. It has an API (Application Programming Interface) available for the developer to use to
control many aspects of the behaviour of the control.

For applications developed using the Progress AppBuilder the DataPA Reports Control is an ActiveX
control that can be added to Progress windows in the same way as other OCX controls.

For applications developed using Visual Studio or OpenEdge Architect the DataPA Reports Control is a
.NET control that can be added to a .NET form or an ABL Form in OpenEdge Architect.

The OCX version of the DataPA Reports control has the same API the .NET version.

DataPA Developer

6

DataPA Application Object
The DataPA Application Object is a non visual class which has an extensive API that allows the
developer to control many aspects of the functionality of DataPA OpenAnalytics. The DataPA Reports
Control and DataPA Enterprise Dashboard both use the DataPA Application Object to perform all the
data related tasks involved in rendered a report or dashboard within your client application.

The DataPA Application Object communicates directly with the Progress AppServer in order to
retrieve data for the report or dashboard.

DataPA ClientConfig Object
The DataPA ClientConfig object is a non visual class which has an extensive API that allows the
developer to control many aspects of the functionality of DataPA OpenAnalytics. The DataPA Reports
Control and DataPA Enterprise Dashboard both use the DataPA ClientConfig object to perform all the
security related tasks involved in rendered a report or dashboard within your client application.

DataPA Developer

7

© DataPA

Best practice recommendations

Single
Application

&
ClientConfig

Sales
Report

Purchasing
Reports

Purchasing
Dashboard

Sales
Dashboard

Create the non visual objects once, and share them in your application

Best practice guidelines for developing with DataPA
In order to get the most out of developing with DataPA some best practice guidelines have been
identified. Putting there guidelines into practice will be looked at in more detail in later chapters of
this course.

Create the non visual objects once, and share them in your application
In order to avoid creation and destruction of multiple DataPA Application and ClientConfig objects it is
recommended that they are created once, when first required by the client application. After this they
should be keep in memory so that is available quickly to service any other requests which occur
during the lifetime of the client application.

The single Application and ClientConfig objects can be used by forms which use the DataPA Reports or
DataPA Enterprise Dashboard controls. This helps ensure better response times for the end users for
the client application.

DataPA Developer

8

© DataPA

DataPA Developer

Lesson 3
DataPA Reports Control

DataPA Reports Control

Introduction
The DataPA report controls allow the DataPA report designer and preview window to be
embedded into any application to provide report functionality. This chapter concentrates on
using the report designer controls with Progress GUI, Visual Studio and OpenEdge Architect
clients.

Learning Objectives
When you complete this lesson you should be able to:

• Configure your development environment to use the DataPA report controls.
• Add the DataPA Reports control to a form.
• Use the controls properties and methods to control its behaviour.
• Respond to events triggered by the DataPA report controls.

Prerequisites
Before you begin this lesson you should be able to:

 Create a GUI application using Progress
 Setup and configure DataPA for an AppServer application

DataPA Developer

9

© DataPA

Configuring the AppBuilder

Configuring Progress AppBuilder
To provide quick and simple access to the DataPA Report Control in the AppBuilder, we can
add it to the AppBuilder Object Palette.

Follow these steps to add the DataPA Report Control to the AppBuilder.

• Start a copy of the the Progress AppBuilder
• From the AppBuilder Object Palette menu, select Add

OCX
 Add as Palette Icon
• Press the Choose OCX button
• Select DataPAReportsControl.PAReports from the

selection list
• Press OK to close the list of available OCX objects
• Press OK to close the Add As Palette Icon dialog box.

DataPA Developer

10

© DataPA

How AppBuilder Encapsulates the
DataPA Reports Control

Parent Frame

Control-frame

Control-frame
COM Object

PAReports Object

How the AppBuilder encapsulates the DataPA Reports Control
The DataPA Reports Control is an ActiveX control or OCX. To comply with the COM object
standard, an ActiveX control instance must be placed in a control container that handles
events and specific user-interface functionality for the control. Progress supports this
standard with the control-frame widget, the container, called a control-frame COM object
and the control itself, in our case a PAReports object.

Control-frame Widget
The control frame widget is a specialised Progress frame that establishes the relationship
between a PAReports control, the other Progress widgets in the user interface, and the 4GL.
As such the control-frame gives access to properties that interact with the other 4GL
widgets, (like ROW and TAB-POSITION), and events that interact with other widgets (like TAB
and LEAVE) or have specific relevance in the 4GL (like GO and END-ERROR).
The control-frame has the following attributes:

Widget Attribute COM Object Property

HEIGHT-PIXELS, HEIGHT[-CHARS] Height

NAME Name

WIDTH-PIXELS, WIDTH[-CHARS] Width

X, COLUMN Left

Y, ROW Top

Control-frame COM Object
The control-frame COM object is the actual PAReports control container. It provides the
initial point of access to the PAReports control from the 4GL. Through the COM object you
can access the component handle of the PAReports control to directly access its properties
and methods.

DataPA Developer

11

© DataPA

AppBuilder Extended Behaviour

HonorProKeys

Name

Tag
Visible

AppBuilder Extended Behaviour
In addition to providing an initial point of access for the PAReports control, the control-
frame COM object acts as a wrapper to the PAReports com object providing extended
functionality specific to the Progress environment. Even though the control-frame COM
object provides this extended functionality, and the functionality is completely unknown to
the PAReports com object, the extended methods, properties and events appear as though
part of the PAReports object itself and are accessed through the same com object handle
(com object handles will be discussed later in this lesson).

Extended Properties
The table below lists the extended properties available for the PAReports control:

Property Name Type Definition

HonorProKeys logical Default is TRUE. Determines who processes the GO, ENDKEY,
HELP, and TAB keys: Progress, or the PAReports control. If the
property is TRUE, Progress intercepts these keys and processes
them as normal Progress key events. If the property is FALSE, the
keystrokes are sent to the PAReports control for processing.

HonorReturnKey logical Default is FALSE. If the property is TRUE, Progress intercepts the
key and processes it as a normal Progress RETURN key event. If
the property is FALSE, which is the default, the keystroke is sent
to the ActiveX control for processing.

Name string The Name property contains the name of the control. The name is
important because it identifies the control. You can use the
control’s name to get a COM-HANDLE to the control (for example,
ASSIGN chPAReports = chCtrlFrame:PAReports, where PAReports
is the control’s name and chCtrlFrame is the control frame
handle). The control name associates event handlers with a
control.

DataPA Developer

12

Property Name Type Definition

Parent COM-
Handle

The Parent property is the com-handle of the container in which
the control resides. This property is set internally by Progress.

Tag string The Tag property is a user property that allows the user to store
an arbitrary string value and retrieve it later. Progress does not
use this property internally, and it is intended to give the user
a way of storing application specific information with the
control. This property is initialized to an empty string.

Visible Logical The Visible property determines and indicates whether a
PAReports control is currently displayed. The Visible property is
distinct from, but influenced by, the Visible and Hidden
attributes of the Control-Frame widget. The Visible property
will appear in the Property Editor and can be set at design time.
It defaults to TRUE. The value set in the Property Editor
determines whether the OCX is initially displayed when the
program is run, but can be overridden by the value of the
Control-Frame widget’s Hidden attribute.

DataPA Developer

13

© DataPA

Creating a PAReports Instance
in the AppBuilder

Creating a PAReports Instance in the AppBuilder
You must use the AppBuilder to add a PAReports control to a Progress user interface. Follow
these steps in the AppBuilder to add a PAReports control:

 Open a container object, such as a Window, Dialog or SmartWindow.
 Choose the PAReports ActiveX control from the object palette.
 Click on the container object to place the PAReports control onto the container.
 Resize the PAReports control as required.

If you save your work at this point, the AppBuilder generates the following data and code for
your application:

 The definition for the default instance of the PAReports control in a binary (.wrx) file.
This includes the initial definition provided by DataPA.

 The default 4GL code in your .w file to instantiate and orient the PAReports control
in the user interface at runtime.

DataPA Developer

14

© DataPA

How AppBuilder Instantiates the Control

Create CONTROL-FRAME …

LOAD-CONTROL()

How the AppBuilder Instantiates the Control
At runtime, Progress uses AppBuilder-generated code to instantiate the PAReports control.
This code uses the CREATE Widget statement to realize a control-frame widget, initializing
the control-frame with the name specified at design time. It then invokes the LoadControls()
method on the control-frame COM object to instantiate the PAReports control, loading all
design time definitions from the .wrx file.

Example
The following AppBuilder-generated code creates the control-frame in our example
application:

CREATE CONTROL-FRAME CtrlFrame ASSIGN
FRAME = FRAME DEFAULT-FRAME:HANDLE
ROW = 1
COLUMN = 1
HEIGHT = 21.67
WIDTH = 137
WIDGET-ID = 2
HIDDEN = no
SENSITIVE = yes.
CtrlFrame:NAME = "CtrlFrame":U .

The following code calls the LoadControls method to load the control into the control-frame
COM object.

DEFINE VARIABLE UIB_S AS LOGICAL NO-UNDO.
DEFINE VARIABLE OCXFile AS CHARACTER NO-UNDO.

OCXFile = SEARCH("{&FILE-NAME}.wrx":U).
IF OCXFile = ? THEN
OCXFile = SEARCH(SUBSTRING(THIS-PROCEDURE:FILE-NAME, 1,

R-INDEX(THIS-PROCEDURE:FILE-NAME, ".":U), "CHARACTER":U)
+ "wrx":U).

IF OCXFile <> ? THEN
DO:
ASSIGN chCtrlFrame = CtrlFrame:COM-HANDLE

UIB_S = chCtrlFrame:LoadControls(OCXFile, "CtrlFrame":U).
RUN initialize-controls IN THIS-PROCEDURE NO-ERROR.

END.

DataPA Developer

15

© DataPA

Design Time Properties in the AppBuilder

Design Time Properties in the AppBuilder
To customise the definition for a PAReports control, you must change the values of control
properties in the AppBuilder at design time. The PAReports control supports properties that
can be changed at both design time and run time, and some properties that can only be
changed at runtime (runtime properties).

Setting Design Time Properties
The AppBuilder provides access to all available design time properties using the OCX
Property Editor window. This window contains all design time properties, including the
extended properties that Progress adds. Follow these steps in the AppBuilder to open the
OCX Property Editor:

 Open a container object that contains a PAReports object.
 Double-click on the PAReports object.

The properties available in the OCX Property Editor window are described in the table
below:

Property Name Type Definition

DesignMode logical Determines whether the PAReports module shows the report
design interface.

HonorProKeys logical Default is TRUE. Determines who processes the GO, ENDKEY,
HELP, and TAB keys: Progress, or the PAReports control. If the
property is TRUE, Progress intercepts these keys and processes
them as normal Progress key events. If the property is FALSE, the
keystrokes are sent to the PAReports control for processing.

HonorReturnKey logical Default is FALSE. If the property is TRUE, Progress intercepts the
key and processes it as a normal Progress RETURN key event. If
the property is FALSE, which is the default, the keystroke is sent
to the ActiveX control for processing.

DataPA Developer

16

Property Name Type Definition

MessageTitle string Sets the title that will appear on any messages displayed by the
PAReports object. The default is DataPA.

Name string The Name property contains the name of the control. The name is
important because it identifies the control. You can use the
control’s name to get a COM-HANDLE to the control (for example,
ASSIGN chPAReports = chCtrlFrame:PAReports, where PAReports
is the control’s name and chCtrlFrame is the control frame
handle). The control name associates event handlers with a
control.

OutlookbarVisible Logical Determines whether the PAReports outlookbar is visible. Default
is TRUE.

PreviewMode logical Determines whether the PAReports module shows the report
preview interface.

PreviewZoom Integer The PreviewZoom property controls the extent to which the
report preview window zooms into the image of the report.

RulersVisible Logical The RulersVisible property controls whether or not the rulers are
visible in the preview pane of the PAReports control.

StatusBarVisible Logical The StatusBarVisible property controls whether or not the status
bar is visible at the base of the PAReports control.

Parent COM-
Handle

The Parent property is the com-handle of the container in which
the control resides. This property is set internally by Progress.

Tag string The Tag property is a user property that allows the user to store
an arbitrary string value and retrieve it later. Progress does not
use this property internally, and it is intended to give the user
a way of storing application specific information with the
control. This property is initialized to an empty string.

ToolBarsVisible logical The ToolBarsVisible property controls whether or not the tool
bars are visible at the top of the PAReports control.

Visible Logical The Visible property determines and indicates whether a
PAReports control is currently displayed. The Visible property is
distinct from, but influenced by, the Visible and Hidden
attributes of the Control-Frame widget. The Visible property
will appear in the Property Editor and can be set at design time.
It defaults to TRUE. The value set in the Property Editor
determines whether the OCX is initially displayed when the
program is run, but can be overridden by the value of the
Control-Frame widget’s Hidden attribute.

DataPA Developer

17

© DataPA

Configuring Visual Studio

Configuring Visual Studio
To provide quick and simple access to the DataPA Report Control in the Visual Studio, we can
add it to Toolbox.

Follow these steps to add the DataPA Report Control to the Toolbox.

• Start a copy of the Microsoft Visual Studio
• Create a new Windows Forms application
• Right click on the Toolbox and select Choose Items.
 Then check the PAReportsControl item from the list on the .NET Framework Components

tab and click OK.

DataPA Developer

18

© DataPA

How Visual Studio Encapsulates
the DataPA Reports Control

Using the DataPA Reports control in the Visual Studio
When using DataPA with Visual Studio it is best to use the DataPA Reports .NET control
provided. This is a .NET control that Visual Studio supports natively. As well as referencing
the .NET control a reference should be added to the Interop assembly for the DataPA
Application object.

DataPA Developer

19

© DataPA

Creating a PAReports Instance
in the Visual Studio

Creating a PAReports Instance in the Visual Studio
To add an instance DataPA Reports control to your form select the PAControls item that was
added to the Toolbox in Visual Studio earlier in this lesson and draw the control onto the
form.

DataPA Developer

20

© DataPA

Design Time Properties in Visual Studio

Design Time Properties in the Visual Studio
To customise the definition for a PAReports control, you must change the values of control
properties in the Visual Studio at design time. The PAReports control supports properties
that can be changed at both design time and run time, and some properties that can only be
changed at runtime (runtime properties).

Setting Design Time Properties
Visual Studio provides access to all available design time properties using the Properties
Toolbox. This window contains all design time properties, including the extended properties
that Visual Studio adds.

The properties available in the Property Toolbox window are described in the table below:

Property Name Type Definition

DesignMode logical Determines whether the PAReports module shows the report
design interface.

MessageTitle string Sets the title that will appear on any messages displayed by the
PAReports object. The default is DataPA.

Name string The Name property contains the name of the control. The name is
important because it identifies the control. You can use the
control’s name to access the properties and methods of the
control.

OutlookbarVisible Logical Determines whether the PAReports outlookbar is visible. Default
is TRUE.

PreviewMode logical Determines whether the PAReports module shows the report
preview interface.

PreviewZoom Integer The PreviewZoom property controls the extent to which the
report preview window zooms into the image of the report.

DataPA Developer

21

Property Name Type Definition

RulersVisible Logical The RulersVisible property controls whether or not the rulers are
visible in the preview pane of the PAReports control.

StatusBarVisible Logical The StatusBarVisible property controls whether or not the status
bar is visible at the base of the PAReports control.

Parent Handle The Parent property is the handle of the container in which the
control resides. This property is set internally by Visual Studio.

Tag string The Tag property is a user property that allows the user to store
an arbitrary string value and retrieve it later. Progress does not
use this property internally, and it is intended to give the user
a way of storing application specific information with the
control. This property is initialized to an empty string.

ToolBarsVisible logical The ToolBarsVisible property controls whether or not the tool
bars are visible at the top of the PAReports control.

Visible Logical The Visible property determines and indicates whether a
PAReports control is currently displayed. The Visible property
will appear in the Property Toolbox and can be set at design time.
It defaults to TRUE. The value set in the Property Editor
determines whether the control is initially displayed when the
project is run.

DataPA Developer

22

© DataPA

Configuring Architect

Configuring Architect
To provide quick and simple access to the DataPA Report Control in the Architect, we can

add it to one of the control groups in the Toolbox.

Follow these steps to add the DataPA Report Control to the Toolbox.

• Start a copy of the OpenEdge Architect
• Create a new OpenEdge Project
 In the Resources Treeview select the newly created project and right click
 Select New and then ABL Form
 Right click on the toolbox and select Add Controls
 Click on the Global Assemblies tab
 Check the PAReportsControl assembly from the list and select OK
 The PAReports controls should now be available in the Toolbox.

DataPA Developer

23

© DataPA

How Architect Encapsulates
the DataPA Reports Control

Using the DataPA Reports control in OpenEdge Architect
When using DataPA with Architect it is best to use the DataPA Reports .NET control
provided. This is a .NET control that Architect supports natively.

© DataPA

Creating a PAReports Instance
in the Architect

Creating a PAReports Instance in the Architect
To add an instance DataPA Reports control to your form select the PAControls item that was
added to the Toolbox in Architect earlier in this lesson and draw the control onto the form.

DataPA Developer

24

© DataPA

Design Time Properties in Architect

Design Time Properties in Architect
To customise the definition for a PAReports control, you must change the values of control
properties in the Architect at design time. The PAReports control supports properties that
can be changed at both design time and run time, and some properties that can only be
changed at runtime (runtime properties).

Setting Design Time Properties
Architect provides access to all available design time properties using the Toolbox. This
window contains all design time properties, including the extended properties that Architect
adds.

The properties available in the Toolbox window are described in the table below:

Property Name Type Definition

DesignMode logical Determines whether the PAReports module shows the report
design interface.

MessageTitle string Sets the title that will appear on any messages displayed by the
PAReports object. The default is DataPA.

Name string The Name property contains the name of the control. The name is
important because it identifies the control. You can use the
control’s name to access the properties and methods of the
control.

OutlookbarVisible Logical Determines whether the PAReports outlookbar is visible. Default
is TRUE.

PreviewMode logical Determines whether the PAReports module shows the report
preview interface.

PreviewZoom Integer The PreviewZoom property controls the extent to which the
report preview window zooms into the image of the report.

DataPA Developer

25

Property Name Type Definition

RulersVisible Logical The RulersVisible property controls whether or not the rulers are
visible in the preview pane of the PAReports control.

StatusBarVisible Logical The StatusBarVisible property controls whether or not the status
bar is visible at the base of the PAReports control.

Parent Handle The Parent property is the handle of the container in which the
control resides. This property is set internally by Visual Studio.

Tag string The Tag property is a user property that allows the user to store
an arbitrary string value and retrieve it later. Progress does not
use this property internally, and it is intended to give the user
a way of storing application specific information with the
control. This property is initialized to an empty string.

ToolBarsVisible logical The ToolBarsVisible property controls whether or not the tool
bars are visible at the top of the PAReports control.

Visible Logical The Visible property determines and indicates whether a
PAReports control is currently displayed. The Visible property
will appear in the Property Toolbox and can be set at design time.
It defaults to TRUE. The value set in the Property Editor
determines whether the control is initially displayed when the
project is run.

DataPA Developer

26

© DataPA

Referencing Properties & Methods
at Runtime

Initialise()

RulersVisible

PreviewZoom

CloseReport(True)

Referencing Properties & Methods at Runtime
The syntax to access properties and methods at runtime is similar to the syntax to access
widget attributes and methods. However, where widget references use widget handles,
PAReports object references use component handles. Component handles support an
extended syntax that allows you to chain component handle references to properties and
methods.

AppBuilder Property Syntax
The syntax for referencing a property of the PAReports COM object is:

COMhdl-expression:Property-Name-Reference

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

Property-Name-Reference
Specifies a single PAReports property.

The following example assigns a value of 75 to the PreviewZoom property of our PAReports object:
PAReports:PreviewZoom = 75.

Visual Studio Property Syntax
The syntax for referencing this property of the PAReports COM object is:

Control.Property-Name-Reference

Control
Is an expression that returns a component handle of a realised PAReports instance.

Property-Name-Reference
Specifies a single PAReports property.

The following example assigns a value of 75 to the PreviewZoom property of our PAReports object:
PAReports.PreviewZoom = 75

DataPA Developer

27

Architect Property Syntax
The syntax for referencing a property of the PAReports COM object is:

Control:Property-Name-Reference

Control
Is an expression that returns a component handle of a realised PAReports instance.

Property-Name-Reference
Specifies a single PAReports property.

The following example assigns a value of 75 to the PreviewZoom property of our PAReports object:
PAReports:PreviewZoom = 75.

As mentioned above, this syntax can be extended to string together several properties to reference a
single property. The following example uses the ApplicationObject property of the PAReports object,
and the Query property of the ApplicationObject to return the com-handle of the query used in the
current report:

AppBuilder Example

chCurrentQuery = PAReports:ApplicationObject:Query

Visual Studio Example

Query = PAReports.ApplicationObject.Query

Architect Example

Query = PAReports:ApplicationObject:Query()

DataPA Developer

28

AppBuilder Method Syntax
The syntax for referencing a method of the PAReports COM object is:

COMhdl-expression:Method-Name
(

{ [OUTPUT | INPUT-OUTPUT]
expression | null-parameter

}
[, [OUTPUT | INPUT-OUTPUT]

expression | null-parameter
] . . .

)

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

Method-Name
The name of the COM object method.

expression
Any valid Progress expression that you can pass as a parameter to the method.

null-parameter
Any amount of white space, indicating an optional parameter that you choose to omit.

The following example calls the OpenReport method to open the report specified by the string in the
cReportFile variable, and passing in a value of TRUE to indicate that we do want the report designer to
prompt the user to save any changes to an existing report if it is open:

PAReports:OpenReport(cReportFile, TRUE).

Visual Studio Method Syntax
The syntax for referencing a method of the PAReports COM object is:

Control:Method-Name
(

[, expression | null-parameter
] . . .

)

Control
Is an expression that returns a component handle of a realised PAReports instance.

Method-Name
The name of the .NET control method.

expression
Any valid expression that you can pass as a parameter to the method.

null-parameter
Any amount of white space, indicating an optional parameter that you choose to omit.

DataPA Developer

29

The following example calls the OpenReport method to open the report specified by the string in the
cReportFile variable, and passing in a value of TRUE to indicate that we do want the report designer to
prompt the user to save any changes to an existing report if it is open:

PAReports.OpenReport(sReportFile, TRUE)

Architect Method Syntax
The syntax for referencing a method of the PAReports control in Architect object is:

Control:Method-Name
(

{ [OUTPUT | INPUT-OUTPUT]
expression | null-parameter

}
[, [OUTPUT | INPUT-OUTPUT]

expression | null-parameter
] . . .

)

Control
Is an expression that returns a component handle of a realised PAReports instance.

Method-Name
The name of the .NET control method.

expression
Any valid Progress expression that you can pass as a parameter to the method.

null-parameter
Any amount of white space, indicating an optional parameter that you choose to omit.

The following example calls the OpenReport method to open the report specified by the string in the
cReportFile variable, and passing in a value of TRUE to indicate that we do want the report designer to
prompt the user to save any changes to an existing report if it is open:

PAReports:OpenReport(cReportFile, TRUE).

DataPA Developer

30

© DataPA

Changing Report Controls the Visual Appearance

Rulers

Tool Bars

Outlookbar

StatusBar

Preview
Zoom

Preview Panel

Changing Report Controls Visual Appearance
The PAReports object provides five properties to change the appearance of the object in the user
interface. These properties can be used to configure the PAReports object for particular uses (e.g. as a
report viewer or a report designer), or exposed to the user through other user-interface objects to
allow the user to configure the object to suit their requirements.

The OutlookbarVisible property
The OutlookbarVisible property allows you to show or hide the outlook bar on the left hand side of
the PAReports object.

AppBuilder Property Syntax
The syntax for referencing this property of the PAReports COM object is:

COMhdl-expression:OutlookbarVisible = expression

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

expression
Any valid Progress logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the outlookbar when the appropriate menu-item is
checked or unchecked:

PAReports:OutlookBarVisible = MENU-ITEM m_Show_OutlookBar:CHECKED
IN MENU MENU-BAR-C-Win.

Visual Studio Property Syntax
The syntax for referencing this property of the PAReports .NET control from Visual Studio is:

Control.OutlookbarVisible = expression

Control
Is an expression that returns handle of a realised PAReports instance.

DataPA Developer

31

expression
Any valid .NET logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the outlookbar when the appropriate menu-item is
checked or unchecked:

PAReports:OutlookBarVisible = mnuShowOutlookbar.checked

Architect Property Syntax
The syntax for referencing this property of the PAReports .NET control from Architect is:

Control:OutlookbarVisible = expression.

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid Progress logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the outlookbar when the appropriate menu-item is
checked or unchecked:

PAReports:OutlookBarVisible = mnuShowOutlookbar:checked.

DataPA Developer

32

The RulersVisible property
The RulersVisible property allows you to show or hide the rulers in the preview window. (NB. The
RulersVisible property can only be set to true if the PreviewZoom is set high enough to give
measurable values) .

AppBuilder Property Syntax
The syntax for referencing this property of the PAReports COM object is:

COMhdl-expression:RulersVisible = expression

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

expression
Any valid Progress logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the preview panel rulers when the appropriate menu-
item is checked or unchecked:

PAReports:RulersVisible = MENU-ITEM m_Show_Rulers:CHECKED IN MENU
MENU-BAR-C-Win.

Visual Studio Property Syntax
The syntax for referencing this property of the PAReports .NET control from Visual Studio is:

Control.RulersVisible = expression

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid .NET logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the rulers when the appropriate menu-item is
checked or unchecked:

PAReports.RulersVisible = mnuShowRulers.checked

Architect Property Syntax
The syntax for referencing this property of the PAReports .NET control from Architect is:

Control:RulersVisible = expression.

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid Progress logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the rulers when the appropriate menu-item is
checked or unchecked:

PAReports:RulersVisible = mnuShowRulers:checked.

DataPA Developer

33

The StatusbarVisible property
The StatusbarVisible property allows you to show or hide the status bar at the bottom of the
PAReports object.

AppBuilder Property Syntax
The syntax for referencing this property of the PAReports COM object is:

COMhdl-expression:StatusbarVisible = expression

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

expression
Any valid Progress logical expression that resolves to TRUE or FALSE.

For example, the following code hides the status bar:

PAReports:StatusbarVisible = FALSE.

Visual Studio Property Syntax
The syntax for referencing this property of the PAReports .NET control from Visual Studio is:

Control.StatusbarVisible = expression

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid .NET logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the status bar when the appropriate menu-item is
checked or unchecked:

PAReports.StatusbarVisible = mnuShowStatusBar.checked

Architect Property Syntax
The syntax for referencing this property of the PAReports .NET control from Architect is:

Control:StatusbarVisible = expression.

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid Progress logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the rulers when the appropriate menu-item is
checked or unchecked:

PAReports:StatusbarVisible = mnuShowStatusbar:checked.

DataPA Developer

34

The ToolbarsVisible property
The ToolbarsVisible property allows you to show or hide the toolbars at the top of the PAReports
object.

AppBuilder Property Syntax
The syntax for referencing this property of the PAReports COM object is:

COMhdl-expression:ToolbarsVisible = expression

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

expression
Any valid Progress logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the toolbars when the appropriate menu-item is
checked or unchecked:

PAReports:ToolbarsVisible = MENU-ITEM m_Show_Toolbars:CHECKED
IN MENU MENU-BAR-C-Win.

Visual Studio Property Syntax
The syntax for referencing this property of the PAReports .NET control from Visual Studio is:

Control.ToolbarsVisible = expression

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid .NET logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the tool bars when the appropriate menu-item is
checked or unchecked:

PAReports.ToolbarsVisible = mnuShowToolbars.checked

Architect Property Syntax
The syntax for referencing this property of the PAReports .NET control from Architect is:

Control:ToolbarsVisible = expression.

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid Progress logical expression that resolves to TRUE or FALSE.

For example, the following code shows or hides the tool bars when the appropriate menu-item is
checked or unchecked:

PAReports:ToolbarsVisible = mnuShowToolbars:checked.

DataPA Developer

35

The PreviewZoom property
The PreviewZoom property allows you to level of zoom used to view the report in the report preview
panel.

AppBuilder Property Syntax
The syntax for referencing this property of the PAReports COM object is:

COMhdl-expression:PreviewZoom = expression

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

expression
Any valid Progress integer expression.

The following example assigns a value of 75 to the PreviewZoom property of our PAReports object:

PAReports:PreviewZoom = 75.

Visual Studio Property Syntax
The syntax for referencing this property of the PAReports .NET control from Visual Studio is:

Control.PreviewZoom = expression

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid .NET integer expression.

The following example assigns a value of 75 to the PreviewZoom property of our PAReports object:

PAReports.PreviewZoom = 75

Architect Property Syntax
The syntax for referencing this property of the PAReports .NET control from Architect is:

Control:PreviewZoom = expression.

Control
Is an expression that returns handle of a realised PAReports instance.

expression
Any valid Progress integer expression.

The following example assigns a value of 75 to the PreviewZoom property of our PAReports object:

PAReports:PreviewZoom = 75.

DataPA Developer

36

© DataPA

Changing the State of the PAReports
Object

Initialise

DesignMode = TRUE

PreviewMode = TRUE

Changing the State of the PAReports Object
The PAReports object provides a method and two properties to change the state of the PAReports
object.

The Initialise method
The Initialise method must be called before the PAReports object can be used.

AppBuilder Method Syntax
It is best practice to call the initialise method in the initialise-controls procedure in your Progress GUI
window. The syntax for referencing this property of the PAReports COM object is:

COMhdl-expression:Initialise()

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

The following example shows the use of the initialise method in our example application:

PAReports:Initialise().

Visual Studio Method Syntax
It is best practice to call the initialise method in the load event of your .NET form. The syntax for
referencing this property of the PAReports object is:

Control.Initialise()

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the initialise method in our example application:

PAReports.Initialise()

DataPA Developer

37

Architect Method Syntax
It is best practice to call the initialise method in the load event of your ABL .NET form. The syntax for
referencing this property of the PAReports object is:

Control:Initialise().

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the initialise method in our example application:

PAReports:Initialise().

DataPA Developer

38

The DesignMode Property
The DesignMode property allows you to set the PAReports control into design mode or query
whether or not the PAReports control is in design mode. The DesignMode property should only be set
when there is a report open in the control.

AppBuilder Property Syntax
The syntax for referencing this property of the PAReports COM object is:

COMhdl-expression:DesignMode = TRUE

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

The following example shows the use of the DesignMode property in our example application:

PAReports:DesignMode = TRUE.

Visual Studio Property Syntax
The syntax for referencing this property of the PAReports object is:

Control.DesignMode = TRUE

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the DesignMode property in our example application:

PAReports.DesignMode = TRUE

Architect Property Syntax
The syntax for referencing this property of the PAReports object is:

Control:DesignMode = TRUE

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the DesignMode property in our example application:

PAReports:DesignMode = TRUE.

DataPA Developer

39

The PreviewMode Property
The PreviewMode property allows you to set the PAReports control into preview mode or query
whether or not the PAReports control is in preview mode.

AppBuilder Property Syntax
The syntax for referencing this property of the PAReports COM object is:

COMhdl-expression:PreviewMode = TRUE

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

The following example shows the use of the PreviewMode property in our example application:

PAReports:PreviewMode = TRUE.

Visual Studio Property Syntax
The syntax for referencing this property of the PAReports object is:

Control.PreviewMode = TRUE

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the PreViewMode property in our example application:

PAReports.PreviewMode = TRUE

Architect Property Syntax
The syntax for referencing this property of the PAReports object is:

Control:PreviewMode = TRUE

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the PreviewMode property in our example application:

PAReports:PreviewMode = TRUE.

DataPA Developer

40

© DataPA

Managing Reports

Managing Reports
The PAReports control provides six methods to allow the developer to manage reports with the
PAReports control. The methods can be used to automatically manage reports using the application
code, or respond to user interface events to provide functionality for the user.

The OpenReport Method
The OpenReport method opens a report in the PAReports control.

AppBuilder Method Syntax
The syntax for referencing this method of the PAReports COM object is:

COMhdl-expression:OpenReport(ReportName, CheckBeforeClose)

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

ReportName
A string expression that returns the fully qualified pathname to the required report.

CheckBeforeClose
A logical expression. If the expression is TRUE, PAReports will check if there is an existing report open
with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the OpenReports method in our example application:

PAReports:OpenReport(cReportFile, TRUE).

DataPA Developer

41

Visual Studio Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.OpenReport(ReportName, CheckBeforeClose)

Control
Is an expression that returns handle of a realised PAReports instance.

ReportName
A string expression that returns the fully qualified pathname to the required report.

CheckBeforeClose
A boolean expression. If the expression is TRUE, PAReports will check if there is an existing report
open with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the OpenReports method in our example application:

PAReports.OpenReport(cReportFile, TRUE)

Architect Method Syntax
The syntax for referencing this method of the PAReports object is:

Control:OpenReport(ReportName, CheckBeforeClose)

Control
Is an expression that returns handle of a realised PAReports instance.

ReportName
A string expression that returns the fully qualified pathname to the required report.

CheckBeforeClose
A logical expression. If the expression is TRUE, PAReports will check if there is an existing report open
with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the OpenReports method in our example application:

PAReports:OpenReport(cReportFile, TRUE).

DataPA Developer

42

The CloseReport Method
The CloseReport method closes a report in the PAReports control.

AppBuilder Method Syntax
The syntax for referencing this method of the PAReports COM object is:

COMhdl-expression:CloseReport(CheckBeforeClose)

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

CheckBeforeClose
A logical expression. If the expression is TRUE, PAReports will check if there is an existing report open
with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the CloseReports method in our example application:

PAReports:CloseReport(TRUE).

Visual Studio Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.CloseReport(CheckBeforeClose)

Control
Is an expression that returns handle of a realised PAReports instance.

CheckBeforeClose
A boolean expression. If the expression is TRUE, PAReports will check if there is an existing report
open with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the CloseReports method in our example application:

PAReports.CloseReport(TRUE)

Architect Method Syntax
The syntax for referencing this method of the PAReports object is:

Control:CloseReport(CheckBeforeClose)

Control
Is an expression that returns handle of a realised PAReports instance.

CheckBeforeClose
A logical expression. If the expression is TRUE, PAReports will check if there is an existing report open
with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the CloseReports method in our example application:

PAReports:CloseReport(TRUE).

DataPA Developer

43

The NewReport Method
The NewReport method opens a new report in the PAReports control.

AppBuilder Method Syntax
The syntax for referencing this methos of the PAReports COM object is:

COMhdl-expression:NewReport(CheckBeforeClose)

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

CheckBeforeClose
A logical expression. If the expression is TRUE, PAReports will check if there is an existing report open
with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the NewReport method in our example application:

PAReports:NewReport(TRUE).

Visual Studio Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.NewReport(CheckBeforeClose)

Control
Is an expression that returns handle of a realised PAReports instance.

CheckBeforeClose
A boolean expression. If the expression is TRUE, PAReports will check if there is an existing report
open with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the NewReport method in our example application:

PAReports.NewReport(TRUE)

Architect Method Syntax
The syntax for referencing this method of the PAReports object is:

Control:NewReport(CheckBeforeClose)

Control
Is an expression that returns handle of a realised PAReports instance.

CheckBeforeClose
A logical expression. If the expression is TRUE, PAReports will check if there is an existing report open
with any changes and prompt the user to save the changes before continuing.

The following example shows the use of the NewReport method in our example application:

PAReports:NewReport(TRUE).

DataPA Developer

44

The SaveReport Method
The SaveReport method saves the report in the PAReports control.

AppBuilder Method Syntax
The syntax for referencing this method of the PAReports COM object is:

COMhdl-expression:SaveReport(SaveAs)

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

SaveAs
A logical expression. If the expression is TRUE, PAReports show the Save As dialog box, otherwise,
PAReports will only show the Save As dialog box if the report has not been previously saved.

The following example shows the use of the SaveReport method in our example application:

PAReports:SaveReport(FALSE).

Visual Studio Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.SaveReport(SaveAs)

Control
Is an expression that returns handle of a realised PAReports instance.

SaveAs
A boolean expression. If the expression is TRUE, PAReports show the Save As dialog box, otherwise,
PAReports will only show the Save As dialog box if the report has not been previously saved.

The following example shows the use of the SaveReport method in our example application:

PAReports.SaveReport(FALSE)

Architect Method Syntax
The syntax for referencing this method of the PAReports object is:

Control:SaveReport(SaveAs)

Control
Is an expression that returns handle of a realised PAReports instance.

SaveAs
A logical expression. If the expression is TRUE, PAReports show the Save As dialog box, otherwise,
PAReports will only show the Save As dialog box if the report has not been previously saved.

The following example shows the use of the SaveReport method in our example application:

PAReports:SaveReport(FALSE).

DataPA Developer

45

The RefreshData Method
The RefreshData method refreshes the data in the current report.

AppBuilder Method Syntax
The syntax for referencing this method of the PAReports COM object is:

COMhdl-expression:RefreshData()

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

The following example shows the use of the Refreshdata method in our example application:

PAReports:RefreshData().

Visual Studio Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.RefreshData()

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the Refreshdata method in our example application:

PAReports.RefreshData()

Architect Method Syntax
The syntax for referencing this method of the PAReports object is:

Control:RefreshData()

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the Refreshdata method in our example application:

PAReports:RefreshData().

DataPA Developer

46

The PrintReport Method
The PrintReport method prints the report in the PAReports control.

AppBuilder Method Syntax
The syntax for referencing this method of the PAReports COM object is:

COMhdl-expression:PrintReport(DisplayDialog)

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

DisplayDialog
A logical expression. If the expression is TRUE, PAReports will display the print report dialog box to
allow the user to select the print options. Otherwise the PAReports option use the default print
settings to print the report.

The following example shows the use of the PrintReport method in our example application:
PAReports:PrintReport(TRUE).

Visual Studio Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.PrintReport(DisplayDialog)

Control
Is an expression that returns handle of a realised PAReports instance.

DisplayDialog
A boolean expression. If the expression is TRUE, PAReports will display the print report dialog box to
allow the user to select the print options. Otherwise the PAReports option use the default print
settings to print the report.

The following example shows the use of the PrintReport method in our example application:
PAReports.PrintReport(TRUE)

Architect Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.PrintReport(DisplayDialog)

Control
Is an expression that returns handle of a realised PAReports instance.

DisplayDialog
A logical expression. If the expression is TRUE, PAReports will display the print report dialog box to
allow the user to select the print options. Otherwise the PAReports option use the default print
settings to print the report.

The following example shows the use of the PrintReport method in our example application:
PAReports:PrintReport(TRUE).

DataPA Developer

47

The PrintSetup Method
The PrintSetup method shows the print setup dialog box in the PAReports control.

AppBuilder Method Syntax
The syntax for referencing this method of the PAReports COM object is:

COMhdl-expression:PrintSetup()

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

The following example shows the use of the PrintSetup method in our example application:

PAReports:PrintSetup().

Visual Studio Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.PrintSetup()

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the PrintSetup method in our example application:

PAReports.PrintSetup()

Architect Method Syntax
The syntax for referencing this method of the PAReports object is:

Control:PrintSetup()

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the PrintSetup method in our example application:

PAReports:PrintSetup().

DataPA Developer

48

The ExportReport Method
The ExportReport method shows the export dialog box from the PAReports control. This will allow the
user to export the report to a range of different formats.

AppBuilder Method Syntax
The syntax for referencing this method of the PAReports COM object is:

COMhdl-expression:ExportReport()

COMhdl-expression
Is an expression that returns a component handle of a realised PAReports instance.

The following example shows the use of the Export method in our example application:

PAReports:ExportReport().

Visual Studio Method Syntax
The syntax for referencing this method of the PAReports object is:

Control.ExportReport()

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the Export method in our example application:

PAReports.ExportReport()

Architect Method Syntax
The syntax for referencing this method of the PAReports object is:

Control:ExportReport()

Control
Is an expression that returns handle of a realised PAReports instance.

The following example shows the use of the Export method in our example application:

PAReports:ExportReport().

DataPA Developer

49

© DataPA

Responding to Events

Responding to Events in the AppBuilder
Progress handles PAReports events using OCX event procedures. An OCX event procedure is a
standard Progress internal procedure that serves as an event handler for ActiveX controls. PAReports
will often pass one or more parameters that must be handled by the event procedure. These
parameters are defined as parameters in the event procedure. Progress identifies an OCX event
procedure from the construction of its name. This is the only syntactic feature that distinguishes
Progress internal procedures as an OCX event procedure.

Creating Event Procedures in the AppBuilder
Follow these steps to create an OCX event procedure in the AppBuilder:

 Click on the edit code button in the AppBuilder to open the section editor
 Select Triggers in the Section combo-box
 Select the control frame in the OF combo-box
 Press New
 Select the appropriate event

The AppBuilder will create an appropriate event procedure
with the relevant paramaters…

DataPA Developer

50

Responding to Events in Visual Studio
Visual Studio handles PAReports events using standard .NET event procedures. PAReports will often
pass one or more parameters that must be handled by the event procedure. These parameters are
defined as parameters in the event procedure. Visual Studio identifies an event procedure from
handler that is assigned to it for example (Handles PaReports1.ReportClosed).

Creating Event Procedures in Visual Studio
Follow these steps to create an event procedure in Visual Studio:

 Select the View Code option for the form which hosts the PAReports control
 Select the PAReports instance from the object drop down
 Select the event from the drop down list of events beside it

Visual Studio will create an appropriate event procedure with the correct handler assigned.

DataPA Developer

51

Responding to Events in Architect
Architect handles PAReports events using Architect event procedures. PAReports will often pass one
or more parameters that must be handled by the event procedure. These parameters are defined as
parameters in the event procedure. Architect identifies an event procedure using the subscribe
statement that is set in the InitializeComponent method of the ABL Form. For example (THIS-
OBJECT:paReports1:ReportClosed:SUBSCRIBE(THIS-
OBJECT:ReportClosedHandler).). The code to handle the event should then be placed in
the method created by Architect.

Creating Event Procedures in Architect
Follow these steps to create an event procedure in Architect:

 Select the instance of PAReports in the ABL Form designer
 From the Property Toolbox select the Events tab

 Against the event you want to add event procedure for enter the name of the procedure you
want to use.

 Architect will add a new method to the ABL Form which will have the name entered.

DataPA Developer

52

© DataPA

PAReports Events

Introduction
PAReports provides nine events to allow the developer to respond to changes in the state of the
object.

PAReports Events
These events are listed in the table below:

Event Name Parameters Definition & Usage

ControlsRefreshed None Event is triggered when any code or user interaction
causes the controls in the PAReports object to be
redrawn. The event is useful to respond to changes in
state of the object. In our example application the
ControlsRefreshed event is used to check and uncheck
m_Show_Rulers, m_Show_OutlookBar and
m_Show_Toolbars menu items to reflect whether or
not these items are visible in the PAReports object.

ReportOpened Filename (String) Event is triggered when a report is opened, with the
input parameter receiving the name of the report that
has just been opened. In our example the
ReportOpened event is used to enable widgets that are
only relevant if a report is open in the PAReports
object.

ReportClosed None Event is triggered when a report is closed. In our
example the ReportClosed event is used to disable
widgets that are only relevant if a report is open in the
PAReports object.

ReportSaved Filename (String) Event is triggered when a report is saved, with the
input parameter receiving the name of the report that
has just been opened. The event is useful for situations
where you want to record reports that have been
saved, for example when building a list most recently
used reports.

ReportStart None Event is triggered when a report refresh is started.

DataPA Developer

53

Event Name Parameters Definition & Usage

ReportEnd None Event is triggered when a report refresh is ended. This
event is useful for knowing when a report refresh has
been completed so that another action on the report is
not started while the report is still updating.

LoadCompleted None This event is triggered when the load of the report
viewer is completed and all the pages of the report and
loaded into the report viewer.

DesignerStatusChange Action (integer) This event is triggered each time the status of the
report designer changes. The parameter Action is
passed in and then denotes the type of change that has
been made. This is useful so that when a change is
made an action can be programmed in response to the
status change.

SetupRefreshed None This event is triggered when the DataPA setup files are
refreshed. This is useful for knowing when a potential
problem

The settings for action are:

Value Description
ddActionFOpen 1 - File: Open.
ddActionFSave 2 - File: Save.
ddActionFPageSetup 3 - File: Page Setup.
ddActionECut 4 - Edit: Cut.
ddActionEPaste 5 - Edit: Paste.
ddActionECopy 6 - Edit: Copy.
ddActionEUndo 7 - Edit: Undo.
ddActionEDelete 8 - Edit: Delete.
ddActionEDeleteSection 9 - Edit: Delete Section.
ddActionEInsertReportHF 10 - Edit: Insert Report Header/Footer.
ddActionEInsertPageHF 11 - Edit: Insert Page Header/Footer.
ddActionEInsertGroupHF 12 - Edit: Insert Group Header/Footer.
ddActionEReorderGroups 13 - Edit: Reorder Groups.
ddActionEInsertField 14 - Edit: Insert Field.
ddActionViewExplorer 15 - View: Report Explorer.
ddActionViewFieldsList 16 - View: Fields List.
ddActionViewPropertyList 17 - View: Property Listbox.
ddActionViewGrid 18 - View: Grid.
ddActionViewSnapToGrid 19 - View: Snap to grid.
ddActionViewFullScreen 20 - View: Full screen.
ddActionViewCodeEditor 21 - View: Script Code Editor.
ddActionFoAlignLefts 22 - Format: Align Control Lefts.
ddActionFoAlignRights 23 - Format: Align Control Rights.
ddActionFoAlignCenters 24 - Format: Align Control Centers.
ddActionFoAlignTops 25 - Format: Align Control Tops.
ddActionFoAlignMiddles 26 - Format: Align Control Middles.
ddActionFoAlignBottoms 27 - Format: Align Control Bottoms.
ddActionFoAlignToGrid 28 - Format: Align to Controls Grid.
ddActionFoAlignCenterInSec 29 - Format: Align : Center Control in Section.
ddActionFoSizeSameWidth 30 - Format: Size controls to the same width.

DataPA Developer

54

ddActionFoSizeSameHeight 31 - Format: Size controls to the same height.
ddActionFoSizeSameBoth 32 - Format: Size controls to the same width and height.
ddActionFoVSpaceEqual 33 - Format: Space controls even vertically.
ddActionFoVSpaceIncrease 34 - Format: Increase vertical spacing.
ddActionFoVSpaceDecrease 35 - Format: Decrease vertical spacing.
ddActionFoHSpaceEqual 36 - Format: Space controls even horizontally.
ddActionFoHSpaceIncrease 37 - Format: Increase horizontal spacing.
ddActionFoHSpaceDecrease 38 - Format: Decrease horizontal spacing.
ddActionFoOrderBringToFront 39 - Format: Bring control to the foreground.
ddActionFoOrderSendToBack 40 - Format: Send control to the background.
ddActionFoLockControls 41 - Format: Lock controls size and position.
ddActionFoStyle 42 - Format: Style.
ddActionFoFontName 43 - Format: Font name.
ddActionFoFontSize 44 - Format: Font size.
ddActionFoFontBold 45 - Format: bold.
ddActionFoFontItalic 46 - Format: Italic.
ddActionFoTextAlignLeft 47 - Format: Align text left.
ddActionFoTextAlignCenter 48 - Format: Align text center.
ddActionFoTextAlignRight 49 - Format: Align text Right.
ddActionFoForeColor 50 - Format: Set foreground color.
ddActionFoBackColor 51 - Format: Set background color.
ddActionFoLineStyle 52 - Format: Set line style.
ddActionFoLineColor 53 - Format: Set line color.
ddActionFoBorder 54 - Format: Set border styles.
ddActionFoBullets 55 - Format: Set bullet style.
ddActionFoIndent 56 - Format: Indent text.
ddActionFoOutdent 57 - Format: Outdent text.
ddActionFoUnderline 58 - Format: Underline

DataPA Developer

55

© DataPA

DataPA Developer

Lesson 4
DataPA Enterprise Dashboard Control

DataPA Enterprise Dashboard Control

Introduction
The DataPA Enterprise Dashboard control allows the DataPA dashboard designer and viewer
window to be embedded into any application to provide dashboard functionality. This
chapter concentrates on using the DataPA Enterprise Dashboard control with Progress GUI,
Visual Studio and OpenEdge Architect clients.

Learning Objectives
When you complete this lesson you should be able to:

• Configure your development environment to use the DataPA Enterprise Dashboard
control.

• Add the DataPA Enterprise Dashboard control to a form.
• Use the controls properties and methods to control its behaviour.
• Respond to events triggered by the DataPA Enterprise Dashboard controls.

Prerequisites
Before you begin this lesson you should be able to:

 Create a GUI application using Progress
 Setup and configure DataPA for an AppServer application

DataPA Developer

56

© DataPA

Configuring the AppBuilder

Configuring Progress AppBuilder
To provide quick and simple access to the DataPA Enterprise Dashboard Control in the
AppBuilder, we can add it to the AppBuilder Object Palette.

Follow these steps to add the DataPA Enterprise Dashboard Control to the AppBuilder.

• Start a copy of the the Progress AppBuilder
• From the AppBuilder Object Palette menu, select Add

OCX
 Add as Palette Icon
• Press the Choose OCX button
• Select

DataPAEnterpriseDashboard.DashboardDesigner from
the selection list

• Press OK to close the list of available OCX objects
• Press OK to close the Add As Palette Icon dialog box.

DataPA Developer

57

© DataPA

How AppBuilder Encapsulates the
Enterprise Dashboard Control

Parent Frame

Control-frame

Control-frame
COM Object

Enterprise
Dashboard Object

How the AppBuilder encapsulates the DataPA Enterprise
Dashboard Control
The DataPA Enterprise Dashboard Control is an ActiveX control or OCX. To comply with the
COM object standard, an ActiveX control instance must be placed in a control container that
handles events and specific user-interface functionality for the control. Progress supports
this standard with the control-frame widget, the container, called a control-frame COM
object and the control itself, in our case a DashboardDesigner object.

Control-frame Widget
The control frame widget is a specialised Progress frame that establishes the relationship
between a DashboardDesigner control, the other Progress widgets in the user interface, and
the 4GL. As such the control-frame gives access to properties that interact with the other
4GL widgets, (like ROW and TAB-POSITION), and events that interact with other widgets (like
TAB and LEAVE) or have specific relevance in the 4GL (like GO and END-ERROR).

The control-frame has the following attributes:
Widget Attribute COM Object Property

HEIGHT-PIXELS, HEIGHT[-CHARS] Height
NAME Name
WIDTH-PIXELS, WIDTH[-CHARS] Width
X, COLUMN Left
Y, ROW Top

Control-frame COM Object
The control-frame COM object is the actual DashboardDesigner control container. It
provides the initial point of access to the DashboardDesigner control from the 4GL. Through
the COM object you can access the component handle of the DashboardDesigner control to
directly access its properties and methods.

DataPA Developer

58

© DataPA

AppBuilder Extended Behaviour

HonorProKeys

Name

Tag
Visible

AppBuilder Extended Behaviour
In addition to providing an initial point of access for the DashboardDesigner control, the
control-frame COM object acts as a wrapper to the DashboardDesigner com object providing
extended functionality specific to the Progress environment. Even though the control-frame
COM object provides this extended functionality, and the functionality is completely
unknown to the DashboardDesigner com object, the extended methods, properties and
events appear as though part of the DashboardDesigner object itself and are accessed
through the same com object handle (com object handles will be discussed later in this
lesson).

Extended Properties
The table below lists the extended properties available for the DashboardDesigner control:

Property Name Type Definition

HonorProKeys logical Default is TRUE. Determines who processes the GO, ENDKEY,
HELP, and TAB keys: Progress, or the DashboardDesigner control.
If the property is TRUE, Progress intercepts these keys and
processes them as normal Progress key events. If the property is
FALSE, the keystrokes are sent to the DashboardDesigner control
for processing.

HonorReturnKey logical Default is FALSE. If the property is TRUE, Progress intercepts the
key and processes it as a normal Progress RETURN key event. If
the property is FALSE, which is the default, the keystroke is sent
to the DashboardDesigner control for processing.

Name string The Name property contains the name of the control. The name is
important because it identifies the control. You can use the
control’s name to get a COM-HANDLE to the control (for example,
ASSIGN chDashboard = chCtrlFrame: DashboardDesigner, where
DashboardDesigner is the control’s name and chCtrlFrame is the
control frame handle). The control name associates event
handlers with a control.

Parent COM-
Handle

The Parent property is the com-handle of the container in which
the control resides. This property is set internally by Progress.

DataPA Developer

59

Property Name Type Definition

Tag string The Tag property is a user property that allows the user to store
an arbitrary string value and retrieve it later. Progress does not
use this property internally, and it is intended to give the user
a way of storing application specific information with the
control. This property is initialized to an empty string.

Visible Logical The Visible property determines and indicates whether a
DashboardDesigner control is currently displayed. The Visible
property is distinct from, but influenced by, the Visible and
Hidden attributes of the Control-Frame widget. The Visible
property will appear in the Property Editor and can be set at
design time. It defaults to TRUE. The value set in the Property
Editor determines whether the OCX is initially displayed when the
program is run, but can be overridden by the value of the
Control-Frame widget’s Hidden attribute.

DataPA Developer

60

© DataPA

Creating a DashboardDesigner
Instance in the AppBuilder

Creating a DashboardDesigner Instance in the AppBuilder
You must use the AppBuilder to add a DashboardDesigner control to a Progress user
interface. Follow these steps in the AppBuilder to add a DashboardDesigner control:

 Open a container object, such as a Window, Dialog or SmartWindow.
 Choose the DashboardDesigner ActiveX control from the object palette.
 Click on the container object to place the DashboardDesigner control onto the

container.
 Resize the DashboardDesigner control as required.

If you save your work at this point, the AppBuilder generates the following data and code for
your application:

 The definition for the default instance of the DashboardDesigner control in a binary
(.wrx) file. This includes the initial definition provided by DataPA.

 The default 4GL code in your .w file to instantiate and orient the DashboardDesigner
control in the user interface at runtime.

DataPA Developer

61

© DataPA

How AppBuilder Instantiates the Control

Create CONTROL-FRAME …

LOAD-CONTROL()

How the AppBuilder Instantiates the Control
At runtime, Progress uses AppBuilder-generated code to instantiate the DashboardDesigner
control. This code uses the CREATE Widget statement to realize a control-frame widget,
initializing the control-frame with the name specified at design time. It then invokes the
LoadControls() method on the control-frame COM object to instantiate the PAReports
control, loading all design time definitions from the .wrx file.

Example
The following AppBuilder-generated code creates the control-frame in our example
application:

CREATE CONTROL-FRAME CtrlFrame ASSIGN
FRAME = FRAME DEFAULT-FRAME:HANDLE
ROW = 1
COLUMN = 1
HEIGHT = 21.67
WIDTH = 137
WIDGET-ID = 2
HIDDEN = no
SENSITIVE = yes.
CtrlFrame:NAME = "CtrlFrame":U .

The following code calls the LoadControls method to load the control into the control-frame
COM object.

DEFINE VARIABLE UIB_S AS LOGICAL NO-UNDO.
DEFINE VARIABLE OCXFile AS CHARACTER NO-UNDO.

OCXFile = SEARCH("{&FILE-NAME}.wrx":U).
IF OCXFile = ? THEN
OCXFile = SEARCH(SUBSTRING(THIS-PROCEDURE:FILE-NAME, 1,

R-INDEX(THIS-PROCEDURE:FILE-NAME, ".":U), "CHARACTER":U)
+ "wrx":U).

IF OCXFile <> ? THEN
DO:
ASSIGN chCtrlFrame = CtrlFrame:COM-HANDLE

UIB_S = chCtrlFrame:LoadControls(OCXFile, "CtrlFrame":U).
RUN initialize-controls IN THIS-PROCEDURE NO-ERROR.

END.

DataPA Developer

62

© DataPA

Design Time Properties in the AppBuilder

Design Time Properties in the AppBuilder
To customise the definition for a DashboardDesigner control, you must change the values of
control properties in the AppBuilder at design time. The DashboardDesigner control
supports properties that can be changed at both design time and run time, and some
properties that can only be changed at runtime (runtime properties).

Setting Design Time Properties
The AppBuilder provides access to all available design time properties using the OCX
Property Editor window. This window contains all design time properties, including the
extended properties that Progress adds. Follow these steps in the AppBuilder to open the
OCX Property Editor:

 Open a container object that contains a DashboardDesigner object.
 Double-click on the DashboardDesigner object.

The properties available in the OCX Property Editor window are described in the table
below:

Property Name Type Definition

AboutMenuItemLabel String The title of the about menu item in the context menu that
displays when a user right-clicks on a chart in the dashboard.

AboutMenuItemLink String The link that will be opened when the user selects the about
menu item in the context menu that displays when a user
right-clicks on a chart in the dashboard.

BackgroundColor Integer The background colour of the control. The value should be a
colour defined by a hexadecimal colour in the format
RRGGBB, converted to an integer.

DebugLogging Boolean If set to true, certain internal processes will be logged in the
file [USER_TEMP_DIR]\DataPAEnterpriseDashboard.log.

DataPA Developer

63

Property Name Type Definition

DelayedRender Boolean The rendering of the dashboard will be delayed until a query
has been refreshed if it is opened with the
OpenDashboardDelayedRender method. The
DelayedRender property will be true if the rendering of the
open dashboard has been delayed. If the dashboard has
been opened with the OpenDashboardDelayedRender
method you can force it to be rendered without refreshing
the query by setting the DelayedRender property to false.

Enabled Boolean Indicates whether the control is enabled to accept user
input.

ForegroundColor Integer The default foreground colour for the control. The value
should be a colour defined by a hexadecimal colour in the
format RRGGBB, converted to an integer.

FullScreenMode Boolean Determines whether the control is rendered to support full
screen. Setting this property to true does not change the
size or location of the control, it merely determines what is
displayed on the control. In order to render the dashboard
full screen, it is the developers responsibility to hide the
border and other controls on the form and resize the
dashboard control.

HonorProKeys logical Default is TRUE. Determines who processes the GO, ENDKEY,
HELP, and TAB keys: Progress, or the DashboardDesigner
control. If the property is TRUE, Progress intercepts these
keys and processes them as normal Progress key events. If
the property is FALSE, the keystrokes are sent to the
DashboardDesigner control for processing.

HonorReturnKey logical Default is FALSE. If the property is TRUE, Progress intercepts
the key and processes it as a normal Progress RETURN key
event. If the property is FALSE, which is the default, the
keystroke is sent to the DashboardDesigner control for
processing.

Name string The Name property contains the name of the control. The
name is important because it identifies the control. You can
use the control’s name to get a COM-HANDLE to the control
(for example, ASSIGN chDashboard =
chCtrlFrame:DashboardDesigner, where DashboardDesigner
is the control’s name and chCtrlFrame is the control frame
handle). The control name associates event handlers with a
control.

PaletteMode integer Gets or sets palette style that is applied to the dashboard
control to change its and any child forms appearance.
Valid values are:

ProfessionalSystem = 70280
ProfessionalOffice2003 = 70281
Office2007Blue = 70282
Office2007Silver = 70283
Office2007Black = 70284
Office2010Silver = 70286
Office2010Black = 70287
SparkleBlue = 70288
SparkleOrange = 70289
SparklePurple = 70290
Office2010Blue = 70285

DataPA Developer

64

Property Name Type Definition

ShowAboutMenu Boolean Determines if the about menu item appears in the context
menu that displays when a user right-clicks on a chart in the
dashboard.

ShowDataViewersWhenViewerOnly Boolean Determines if the data viewers that display the raw data
returned by the query are accessible when the ViewerOnly
property is set to true. The default value for this property is
false.

ShowTabs Boolean Determines if the control displays the tabs that are used to
select the different dashboard tabs in the control. The
default is true.

StatusBarVisible Boolean Determines if the status bar is visible at the bottom of the
control. The default is true.

Tag String The Tag property is a user property that allows the user to
store an arbitrary string value and retrieve it later. Progress
does not use this property internally, and it is intended to
give the user a way of storing application specific
information with the control. This property is initialized to
an empty string.

ViewerOnly Boolean If set to True, the Dashboard control will act as a viewer
only, disabling and preventing the display of any controls
associated with editing a dashboard. The default is false,
however if the license installed on the client does not
support editing of the dashboard, this value will be true and
cannot be changed.

Visible Logical The Visible property determines and indicates whether a
PAReports control is currently displayed. The Visible
property is distinct from, but influenced by, the Visible and
Hidden attributes of the Control-Frame widget. The Visible
property will appear in the Property Editor and can be set at
design time. It defaults to TRUE. The value set in the
Property Editor determines whether the OCX is initially
displayed when the program is run, but can be overridden
by the value of the Control-Frame widget’s Hidden attribute.

DataPA Developer

65

© DataPA

Configuring Architect

Configuring Architect
To provide quick and simple access to the DataPA DashboardDesigner Control in the
Architect, we can add it to one of the control groups in the Toolbox.

Follow these steps to add the DataPA Report Control to the Toolbox.

• Start a copy of the OpenEdge Architect
• Create a new OpenEdge Project
 In the Resources Treeview select the newly created project and right click
 Select New and then ABL Form
 Right click on the toolbox and select Add Controls
 Click on the Global Assemblies tab
 Check the DashboardDesigner assembly from the list and select OK
 The DashboardDesigner controls should now be available in the Toolbox.

DataPA Developer

66

© DataPA

Creating a DashboardDesigner
control in Architect

Creating a DashboardDesigner Instance in the Architect
To add an instance DataPA DashboardDesigner control to your form select the
DashboardDesigner toolbox item added to the Toolbox in Architect earlier in this lesson and
draw the control onto the form.

DataPA Developer

67

© DataPA

Design time properties in Architect

Design Time Properties in Architect
To customise the definition for a DashboardDesigner control, you must change the values of
control properties in the Architect at design time. The DashboardDesigner control supports
properties that can be changed at both design time and run time, and some properties that
can only be changed at runtime (runtime properties).

Setting Design Time Properties
Architect provides access to all available design time properties using the Toolbox. This
window contains all design time properties, including the extended properties that Architect
adds.

Those properties available in the Toolbox window that are either specific or pertinent to the
DashboardDesigner are described in the table below:

Property Name Type Definition

AboutMenuItemLabel String The title of the about menu item in the
context menu that displays when a user right-
clicks on a chart in the dashboard.

AboutMenuItemLink String The link that will be opened when the user
selects the about menu item in the context
menu that displays when a user right-clicks on
a chart in the dashboard.

BackgroundColor Integer The background colour of the control. The
value should be a colour defined by a
hexadecimal colour in the format RRGGBB,
converted to an integer.

DataPAApplication DataPA.Application The DataPA Application Object used to
provide the core DataPA data functionality. If
this property has not been assigned a valid
DataPA Application object before the initialise
method is called, the control will create its
own instance of the DataPA Application
Object.

DataPA Developer

68

Property Name Type Definition

DebugLogging Boolean If set to true, certain internal processes will
be logged in the file
[USER_TEMP_DIR]\DataPAEnterpriseDashboa
rd.log.

DelayedRender Boolean The rendering of the dashboard will be
delayed until a query has been refreshed if it
is opened with the
OpenDashboardDelayedRender method. The
DelayedRender property will be true if the
rendering of the open dashboard has been
delayed. If the dashboard has been opened
with the OpenDashboardDelayedRender
method you can force it to be rendered
without refreshing the query by setting the
DelayedRender property to false.

Dock DockStyle Defines which borders of the control are
bound to the container

Enabled Boolean Indicates whether the control is enabled to
accept user input.

ForegroundColor Integer The default foreground colour for the control.
The value should be a colour defined by a
hexadecimal colour in the format RRGGBB,
converted to an integer.

FullScreenMode Boolean Determines whether the control is rendered
to support full screen. Setting this property to
true does not change the size or location of
the control, it merely determines what is
displayed on the control. In order to render
the dashboard full screen, it is the developers
responsibility to hide the border and other
controls on the form and resize the
dashboard control.

Name string The name used to identify this control in the
code.

PaletteMode integer Gets or sets palette style that is applied to the
dashboard control to change its and any child
forms appearance.
Valid values are:

ProfessionalSystem = 70280
ProfessionalOffice2003 = 70281
Office2007Blue = 70282
Office2007Silver = 70283
Office2007Black = 70284
Office2010Silver = 70286
Office2010Black = 70287
SparkleBlue = 70288
SparkleOrange = 70289
SparklePurple = 70290
Office2010Blue = 70285

DataPA Developer

69

Property Name Type Definition

SavedLoginDetails Collection Gets and sets a collection that contains a
username and password that will be used as
the default properties to connect to a server.
The collection should contain two items...

1. A string value containing the username
with the key username.

2. A string value containing the password
with the key password.

ShowAboutMenu Boolean Determines if the about menu item appears
in the context menu that displays when a user
right-clicks on a chart in the dashboard.

ShowDataViewersWhenViewerOnly Boolean Determines if the data viewers that display
the raw data returned by the query are
accessible when the ViewerOnly property is
set to true. The default value for this property
is false.

ShowTabs Boolean Determines if the control displays the tabs
that are used to select the different
dashboard tabs in the control. The default is
true.

StatusBarVisible Boolean Determines if the status bar is visible at the
bottom of the control. The default is true.

Tag String The Tag property is a user property that
allows the user to store an arbitrary string
value and retrieve it later.

ViewerOnly Boolean If set to True, the Dashboard control will act
as a viewer only, disabling and preventing the
display of any controls associated with editing
a dashboard. The default is false, however if
the license installed on the client does not
support editing of the dashboard, this value
will be true and cannot be changed.

Visible Logical Determines if the control is visible in the
form.

DataPA Developer

70

© DataPA

Configuring Visual Studio

Configuring Visual Studio
To provide quick and simple access to the DataPA DashboardDesigner Control in the Visual
Studio, we can add it to Toolbox.

Follow these steps to add the DataPA DashboardDesigner Control to the Toolbox.

• Start a copy of the Microsoft Visual Studio
• Create a new Windows Forms application
• Right click on the Toolbox and select Choose Items.
 Then check the DashboardDesigner item from the list on the .NET Framework

Components tab and click OK.

© DataPA

Creating a PAReports Instance
in the Visual Studio

Creating a DashboardDesigner Instance in the Visual Studio
To add an instance DataPA DashboardDesigner control to your form select the
DashboardDesigner item that was added to the Toolbox in Visual Studio earlier in this lesson
and draw the control onto the form.

DataPA Developer

71

© DataPA

Design Time Properties in Visual Studio

Design Time Properties in the Visual Studio
To customise the definition for a DashboardDesigner control, you must change the values of
control properties in the Visual Studio at design time. The DashboardDesigner control
supports properties that can be changed at both design time and run time, and some
properties that can only be changed at runtime (runtime properties).

Setting Design Time Properties
Visual Studio provides access to all available design time properties using the Properties
Toolbox. This window contains all design time properties, including the extended properties
that Visual Studio adds.

Those properties available in the Toolbox window that are either specific or pertinent to the
DashboardDesigner are described in the table below:

Property Name Type Definition

AboutMenuItemLabel String The title of the about menu item that shows
up in the context menu that displays when a
user right-clicks on a chart in the dashboard.

AboutMenuItemLink String The link that will be opened when the user
selects the about menu item that shows up in
the context menu that displays when a user
right-clicks on a chart in the dashboard.

BackgroundColor Integer The background colour of the control. The
value should be a colour defined by a
hexadecimal colour in the format RRGGBB,
converted to an integer.

DataPAApplication DataPA.Application The DataPA Application Object used to
provide the core DataPA data functionality. If
this property has not been assigned a valid
DataPA Application object before the initialise
method is called, the control will create its
own instance of the DataPA Application
Object.

DataPA Developer

72

Property Name Type Definition

DebugLogging Boolean If set to true, certain internal processes will
be logged in the file
[USER_TEMP_DIR]\DataPAEnterpriseDashboa
rd.log.

DelayedRender Boolean The rendering of the dashboard will be
delayed until a query has been refreshed if it
is opened with the
OpenDashboardDelayedRender method. The
DelayedRender property will be true if the
rendering of the open dashboard has been
delayed. If the dashboard has been opened
with the OpenDashboardDelayedRender
method you can force it to be rendered
without refreshing the query by setting the
DelayedRender property to false.

Dock DockStyle Defines which borders of the control are
bound to the container

Enabled Boolean Indicates whether the control is enabled to
accept user input.

ForegroundColor Integer The default foreground colour for the control.
The value should be a colour defined by a
hexadecimal colour in the format RRGGBB,
converted to an integer.

FullScreenMode Boolean Determines whether the control is rendered
to support full screen. Setting this property to
true does not change the size or location of
the control, it merely determines what is
displayed on the control. In order to render
the dashboard full screen, it is the developers
responsibility to hide the border and other
controls on the form and resize the
dashboard control.

Name string The name used to identify this control in the
code.

PaletteMode integer Gets or sets palette style that is applied to the
dashboard control to change its and any child
forms appearance.
Valid values are:

ProfessionalSystem = 70280
ProfessionalOffice2003 = 70281
Office2007Blue = 70282
Office2007Silver = 70283
Office2007Black = 70284
Office2010Silver = 70286
Office2010Black = 70287
SparkleBlue = 70288
SparkleOrange = 70289
SparklePurple = 70290
Office2010Blue = 70285

DataPA Developer

73

Property Name Type Definition

SavedLoginDetails Collection Gets and sets a collection that contains a
username and password that will be used as
the default properties to connect to a server.
The collection should contain two items...

1. A string value containing the username
with the key username.

2. A string value containing the password
with the key password.

ShowAboutMenu Boolean Determines if the about menu item appears
in the context menu that displays when a user
right-clicks on a chart in the dashboard.

ShowDataViewersWhenViewerOnly Boolean Determines if the data viewers that display
the raw data returned by the query are
accessible when the ViewerOnly property is
set to true. The default value for this property
is false.

ShowTabs Boolean Determines if the control displays the tabs
that are used to select the different
dashboard tabs in the control. The default is
true.

StatusBarVisible Boolean Determines if the status bar is visible at the
bottom of the control. The default is true.

Tag String The Tag property is a user property that
allows the user to store an arbitrary string
value and retrieve it later.

ViewerOnly Boolean If set to True, the Dashboard control will act
as a viewer only, disabling and preventing the
display of any controls associated with editing
a dashboard. The default is false, however if
the license installed on the client does not
support editing of the dashboard, this value
will be true and cannot be changed.

Visible Logical Determines if the control is visible in the
form.

DataPA Developer

74

© DataPA

Referencing Properties & Methods
at Runtime

Initialise()

ShowTabs

DataPAApplication

CloseDashboard(True)

Referencing Properties & Methods at Runtime
The syntax to access properties and methods at runtime largely depends on which of the three
development environments you are using. The following section gives examples for each of the three
supported developer environments:

AppBuilder Property Syntax
The syntax for referencing a property of the DashboardDesigner COM object is:

COMhdl-expression:Property-Name-Reference

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

Property-Name-Reference
Specifies a single DashboardDesigner property.

The following example assigns a value of false to the ShowTabs property of our DashboardDesigner
object:

DashboardDesigner:ShowTabs = False.

Visual Studio Property Syntax
The syntax for referencing a property of the DashboardDesigner object is:

Control.Property-Name-Reference

Control
Is an expression that returns a component handle of a realised DashboardDesigner instance.

Property-Name-Reference
Specifies a single DashboardDesigner property.

The following example assigns a value of false to the ShowTabs property of our DashboardDesigner
object:

DashboardDesigner.ShowTabs = False

Architect Property Syntax
The syntax for referencing a property of the DashboardDesigner object is:

Control:Property-Name-Reference

DataPA Developer

75

Control
Is an expression that returns a component handle of a realised DashboardDesigner instance.

Property-Name-Reference
Specifies a single DashboardDesigner property.

The following example assigns a value of false to the ShowTabs property of our DashboardDesigner
object:

DashboardDesigner:ShowTabs = False.

As mentioned above, this syntax can be extended to string together several properties to reference a
single property. The following example uses the Dashboard property of the DashboardDesigner
object, and the Tabs property of the Dashboard object to return the handle of the tabs used in the
current dashboard:

AppBuilder Example

chTabs = DashboardDesigner:Dashboard:Tabs

Visual Studio Example

Tabs = DashboardDesigner.Dashboard.Tabs

Architect Example

Tabs = DashboardDesigner:Dashboard:Tabs.

DataPA Developer

76

© DataPA

Responding to Events

Responding to Events in the AppBuilder
Progress handles DashboardDesigner events using OCX event procedures. An OCX event procedure is
a standard Progress internal procedure that serves as an event handler for ActiveX controls.
DashboardDesigner will often pass one or more parameters that must be handled by the event
procedure. These parameters are defined as parameters in the event procedure. Progress identifies
an OCX event procedure from the construction of its name. This is the only syntactic feature that
distinguishes Progress internal procedures as an OCX event procedure.

Creating Event Procedures in the AppBuilder
Follow these steps to create an OCX event procedure in the AppBuilder:

 Click on the edit code button in the AppBuilder to open the section editor
 Select Triggers in the Section combo-box
 Select the control frame in the OF combo-box
 Press New
 Select the appropriate event

The AppBuilder will create an appropriate event procedure
with the relevant paramaters…

DataPA Developer

77

Responding to Events in Visual Studio
Visual Studio handles DashboardDesigner events using standard .NET event procedures. The
DashboardDesigner will often pass one or more parameters that must be handled by the event
procedure. These parameters are defined as parameters in the event procedure. Visual Studio
identifies an event procedure from handler that is assigned to it, for example (Handles
DashboardDesigner1.DashboardClosed).

Creating Event Procedures in Visual Studio
Follow these steps to create an event procedure in Visual Studio:

 Select the View Code option for the form which hosts the DashboardDesigner control
 Select the DashboardDesigner instance from the object drop down
 Select the event from the drop down list of events beside it

Visual Studio will create an appropriate event procedure with the correct handler assigned.

DataPA Developer

78

Responding to Events in Architect
Architect handles DashboardDesigner events using Architect event procedures. The
DashboardDesigner will often pass one or more parameters that must be handled by the event
procedure. These parameters are defined as parameters in the event procedure. Architect identifies
an event procedure using the subscribe statement that is set in the InitializeComponent method of
the ABL Form. For example (THIS-
OBJECT:DashboardDesigner:DashboardClosed:Subscribe(THIS-
OBJECT:DashboardClosedHandler).). The code to handle the event should then be placed
in the method created by Architect.

Creating Event Procedures in Architect
Follow these steps to create an event procedure in Architect:

 Select the instance of DashboardDesigner in the ABL Form designer
 From the Property Toolbox select the Events tab

 Against the event you want to add event procedure for enter the name of the procedure you
want to use.

 Architect will add a new method to the ABL Form which will have the name entered.

DataPA Developer

79

© DataPA

Initialising the DashboardDesigner

Initialising the DashboardDesigner Object
As we discussed in Lesson 2, the DashboardDesigner requires a DataPA Application object to provide
the core functionality for DataPA. It is usually the case that you will want to share a single DataPA
application object through all the instances of the DashboardDesigner and other DataPA controls. This
not only improves performance, but will also prevent DataPA repeatedly connecting to an AppServer.
When a DashboardDesigner control is created, it is on a non-initialised state, which means it does not
respond to any user or code input. The control must be initialised, by calling the initialise method,
before it can be used. If you do not assign a valid DataPA Application object to the DataPAApplication
property of the control before calling the initialise method, the control will create its own DataPA
Application object. The PAApplication property of the DashboardDesigner is described in detail in
chapter 5.

The Initialise method
The Initialise method must be called before the DashboardDesigner control can be used.

AppBuilder Method Syntax
It is best practice to call the initialise method in the initialise-controls procedure in your Progress GUI
window. The syntax for referencing this property of the DashboardDesigner COM object is:

COMhdl-expression:Initialise()

COMhdl-expression
Is an expression that returns a component handle of a realised ManagedDashboard instance.

The following example shows the use of the initialise method in our example application:

chDashboard:Initialise.

Visual Studio Method Syntax
It is best practice to call the initialise method in the load event of your .NET form. The syntax for
referencing this property of the DashboardDesigner object is:

Control.Initialise()

Control

DataPA Developer

80

Is an expression that returns handle of a realised DashboardDesigner instance.

The following example shows the use of the initialise method in our example application:

DashboardDesigner.Initialise()

Architect Method Syntax
It is best practice to call the initialise method in the load event of your ABL .NET form. The syntax for
referencing this property of the DashboardDesigner object is:

Control:Initialise().

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

The following example shows the use of the initialise method in our example application:

DashboardDesigner:Initialise().

DataPA Developer

81

© DataPA

Changing the visual appearance
of the DashboardDesigner

Changing the visual appearance of the DashboardDesigner
There are a number of properties that you can use to manipulate the visual appearance and
behaviour of the DashboardDesigner object to suit your application. The table below gives an
overview of the properties which are described in detail below:

Property Description
PaletteMode Gets or sets palette style that is applied to the dashboard control to change its

and any child forms appearance.
Valid values are:

ProfessionalSystem = 70280
ProfessionalOffice2003 = 70281
Office2007Blue = 70282
Office2007Silver = 70283
Office2007Black = 70284
Office2010Silver = 70286
Office2010Black = 70287
SparkleBlue = 70288
SparkleOrange = 70289
SparklePurple = 70290
Office2010Blue = 70285

ViewerOnly If set to True, the Dashboard control will act as a viewer only, disabling and
preventing the display of any controls associated with editing a dashboard. The
default is false, however if the license installed on the client does not support
editing of the dashboard, this value will be true and cannot be changed.

FullScreenMode Determines whether the control is rendered to support full screen. Setting this
property to true does not change the size or location of the control, it merely
determines what is displayed on the control. In order to render the dashboard
full screen, it is the developers responsibility to hide the border and other
controls on the form and resize the dashboard control.

ShowTabs Determines if the control displays the tabs that are used to select the different
dashboard tabs in the control. The default is true.

StatusStripVisible Determines if the status bar is visible at the bottom of the control. The default is
true.

DataPA Developer

82

The PaletteMode property
The PaletteMode property sets palette style that is applied to the DashboardDesigner control to
change its and any child forms appearance.

AppBuilder Property Syntax
The syntax for referencing this property of the DashboardDesigner COM object is:

COMhdl-expression:PaletteMode = expression

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
Any valid Progress integer expression that resolves to one of the valid PaletteMode values.

For example, the following code sets the PaletteMode to ProfessionalSystem:
chDashboard:PaletteMode = 70280.

Visual Studio Property Syntax
The syntax for referencing this property of the ManagedDashboard control from Visual Studio is:

Control.PaletteMode = expression

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid PaletteMode value.

For example, the following code sets the PaletteMode to ProfessionalSystem:
DashboardDesigner.PaletteMode =
DataPAEnterpriseDashboard.DashboardDesigner.DashboardPalette.Professi
onalSystem

Architect Property Syntax
The syntax for referencing this property of the DashboardDesigner control from Architect is:

Control:PaletteMode = expression.

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid PaletteMode value.

For example, the following code sets the PaletteMode to ProfessionalSystem:
DashboardDesigner:PaletteMode =
DataPAEnterpriseDashboard.DashboardDesigner+DashboardPalette:Professi
onalSystem.

DataPA Developer

83

The ViewerOnly property
The ViewerOnly property determines whether the Dashboard control will act as a viewer only, that is
disabling and preventing the display of any controls associated with editing a dashboard. The default
is false, however if the license installed on the client does not support editing of the dashboard, this
value will be true and cannot be changed.

AppBuilder Property Syntax
The syntax for referencing this property of the DashboardDesigner COM object is:

COMhdl-expression:ViewerOnly = expression

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
Any valid Progress logical expression that resolves to True or False.

For example, the following code sets the ViewerOnly property to true:
chDashboard:ViewerOnly = True.

Visual Studio Property Syntax
The syntax for referencing this property of the ManagedDashboard control from Visual Studio is:

Control.ViewerOnly = expression

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid boolean value.

For example, the following code sets the ViewerOnly property to true:
DashboardDesigner.ViewerOnly = true

Architect Property Syntax
The syntax for referencing this property of the DashboardDesigner control from Architect is:

Control:ViewerOnly = expression.

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid logical value.

For example, the following code sets the ViewerOnly property to true:
DashboardDesigner:ViewerOnly = True.

DataPA Developer

84

The FullScreenMode property
The FullScreenMode property determines whether the control is rendered to support full screen.
Setting this property to true does not change the size or location of the control, it merely determines
what is displayed on the control. In order to render the dashboard full screen, it is the developer’s
responsibility to hide the border and other controls on the form and resize the dashboard control.

AppBuilder Property Syntax
The syntax for referencing this property of the DashboardDesigner COM object is:

COMhdl-expression:FullScreenMode = expression

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
Any valid Progress logical expression that resolves to True or False.

For example, the following code sets the FullScreenMode property to true:
chDashboard:FullScreenMode = True.

Visual Studio Property Syntax
The syntax for referencing this property of the ManagedDashboard control from Visual Studio is:

Control.FullScreenMode = expression

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid boolean value.

For example, the following code sets the FullScreenMode property to true:
DashboardDesigner.FullScreenMode = true

Architect Property Syntax
The syntax for referencing this property of the DashboardDesigner control from Architect is:

Control:FullScreenMode = expression.

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid logical value.

For example, the following code sets the FullScreenMode property to true:
DashboardDesigner:FullScreenMode = True.

DataPA Developer

85

The ShowTabs property
The ShowTabs property determines if the control displays the tabs that are used to select the
different dashboard tabs in the control. The default is true.

AppBuilder Property Syntax
The syntax for referencing this property of the DashboardDesigner COM object is:

COMhdl-expression:ShowTabs = expression

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
Any valid Progress logical expression that resolves to True or False.

For example, the following code sets the ShowTabs property to true:
chDashboard:ShowTabs = True.

Visual Studio Property Syntax
The syntax for referencing this property of the ManagedDashboard control from Visual Studio is:

Control.ShowTabs = expression

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid boolean value.

For example, the following code sets the ShowTabs property to true:
DashboardDesigner.ShowTabs = true

Architect Property Syntax
The syntax for referencing this property of the DashboardDesigner control from Architect is:

Control:ShowTabs = expression.

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid logical value.

For example, the following code sets the ShowTabs property to true:
DashboardDesigner:ShowTabs = True.

DataPA Developer

86

The StatusStripVisible property
The StatusStripVisible property determines if the status bar is visible at the bottom of the control. The
default is true.

AppBuilder Property Syntax
The syntax for referencing this property of the DashboardDesigner COM object is:

COMhdl-expression:StatusStripVisible = expression

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
Any valid Progress logical expression that resolves to True or False.

For example, the following code sets the StatusStripVisible property to true:
chDashboard:StatusStripVisible = True.

Visual Studio Property Syntax
The syntax for referencing this property of the ManagedDashboard control from Visual Studio is:

Control.StatusStripVisible = expression

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid boolean value.

For example, the following code sets the StatusStripVisible property to true:
DashboardDesigner.StatusStripVisible = true

Architect Property Syntax
The syntax for referencing this property of the DashboardDesigner control from Architect is:

Control:StatusStripVisible = expression.

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
Any valid logical value.

For example, the following code sets the StatusStripVisible property to true:
DashboardDesigner:StatusStripVisible = True.

DataPA Developer

87

© DataPA

Managing Dashboards

Managing Dashboards
There are a number of properties and methods that you can use to manage the dashboard that is
currently open in the DashboardDesigner control. The table below gives an overview of the properties
and methods, which are described in detail below:

Property/Method Description

Dashboard Retrieves the ManagedDashboard object that represents the dashboard
currently open in the control.

OpenDashboard Opens a dashboard from disk.

OpenDashboardDelayedRender Opens a ManagedDashboard object from disk and delays the rendering of the
dashboard until after a query is refreshed.

CreateDashboard Create a new ManagedDashboard object and opens it in the control.

SaveDashboard Saves the current ManagedDashboard object to disk.

CloseDashboard Closes the currently open ManagedDashboard object. Accepts a single boolean
parameter force. If force is TRUE, the user will not be prompted to save any
changes.

RefreshQueries Refreshes all the queries in the current ManagedDashboard.

Print Prints the current ManagedDashboard object.

PrintPreview Opens the print preview dialog for the current ManagedDashboard object.

DataPA Developer

88

The Dashboard property
The Dashboard property on the DashboardDesigner control provides access to the
ManagedDashboard object that represents the dashboard that is currently open in the control.

AppBuilder Property Syntax
The syntax for referencing this property of the DashboardDesigner COM object is:

expression = COMhdl-expression:Dashboard

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
A COM-HANDLE variable.

For example, the following code gets a handle to the ManagedDashboard object:
chDashboard = chDashboardDesigner:Dashboard.

Visual Studio Property Syntax
The syntax for referencing this property of the ManagedDashboard control from Visual Studio is:

expression = Control.Dashboard

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A DataPAEnterpriseDashboard.ManagedDashboard variable.

For example, the following code gets a handle to the ManagedDashboard object:
Dashboard = DashboardDesigner.Dashboard

Architect Property Syntax
The syntax for referencing this property of the DashboardDesigner control from Architect is:

expression = Control:Dashboard.

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A DataPAEnterpriseDashboard.ManagedDashboard variable.

For example, the following code gets a handle to the ManagedDashboard object:
Dashboard = DashboardDesigner:Dashboard.

DataPA Developer

89

The OpenDashboard method
The OpenDashboard method allows you to open a dashboard in the control from disk.

AppBuilder Property Syntax
The syntax for referencing this method of the DashboardDesigner COM object is:

COMhdl-expression:OpenDashboard(expression)

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
A String expression that contains the name and location of the dashboard file on disk.

For example, the following code opens a ManagedDashboard object:
chDashboardDesigner:OpenDashboard(“C:\myDashboard.edp”).

Visual Studio Property Syntax
The syntax for referencing this method of the ManagedDashboard control from Visual Studio is:

Control.OpenDashboard(expression)

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A String expression that contains the name and location of the dashboard file on disk.

For example, the following code opens a ManagedDashboard object:
DashboardDesigner.OpenDashboard(“C:\myDashboard.edp”)

Architect Property Syntax
The syntax for referencing this method of the DashboardDesigner control from Architect is:

Control:OpenDashboard(expression).

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A String expression that contains the name and location of the dashboard file on disk.

For example, the following code opens a ManagedDashboard object:
DashboardDesigner:OpenDashboard(“C:\myDashboard.edp”).

DataPA Developer

90

The OpenDashboardDelayedRender method
The OpenDashboardDelayedRender method allows you to open a dashboard in the control and delays
the rendering of the dashboard until after a query is refreshed. This is useful when you want to
ensure only the latest information is displayed in the dashboard.

AppBuilder Property Syntax
The syntax for referencing this method of the DashboardDesigner COM object is:

COMhdl-expression:OpenDashboardDelayedRender(expression)

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
A String expression that contains the name and location of the dashboard file on disk.

For example, the following code opens a ManagedDashboard object:
chDashboardDesigner:OpenDashboardDelayedRender(“C:\myDashboard.edp”).

Visual Studio Property Syntax
The syntax for referencing this method of the ManagedDashboard control from Visual Studio is:

Control.OpenDashboardDelayedRender(expression)

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A String expression that contains the name and location of the dashboard file on disk.

For example, the following code opens a ManagedDashboard object:
DashboardDesigner.OpenDashboardDelayedRender(“C:\myDashboard.edp”)

Architect Property Syntax
The syntax for referencing this method of the DashboardDesigner control from Architect is:

Control:DashboardDelayedRender(expression).

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A String expression that contains the name and location of the dashboard file on disk.

For example, the following code opens a ManagedDashboard object:
DashboardDesigner:DashboardDelayedRender(“C:\myDashboard.edp”).

DataPA Developer

91

The CreateDashboard method
The CreateDashboard method creates a new dashboard and renders it in the control.

AppBuilder Property Syntax
The syntax for referencing this method of the DashboardDesigner COM object is:

COMhdl-expression:CreateDashboard()

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

For example, the following code creates a ManagedDashboard object:
chDashboardDesigner:CreateDashboard().

Visual Studio Property Syntax
The syntax for referencing this method of the ManagedDashboard control from Visual Studio is:

Control.CreateDashboard()

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

For example, the following code creates a ManagedDashboard object:
DashboardDesigner.CreateDashboard()

Architect Property Syntax
The syntax for referencing this method of the DashboardDesigner control from Architect is:

Control:CreateDashboard().

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

For example, the following code opens a ManagedDashboard object:
DashboardDesigner:CreateDashboard().

DataPA Developer

92

The SaveDashboard method
The SaveDashboard method allows you to save a dashboard in the control to disk.

AppBuilder Property Syntax
The syntax for referencing this method of the DashboardDesigner COM object is:

COMhdl-expression:SaveDashboard(expression)

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
A Boolean expression that indicates if the SaveAs dialog should be used regardless of whether the
dashboard has been saved before.

For example, the following code saves a ManagedDashboard object:
chDashboardDesigner:SaveDashboard(False).

Visual Studio Property Syntax
The syntax for referencing this method of the ManagedDashboard control from Visual Studio is:

Control.SaveDashboard(expression)

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A Boolean expression that indicates if the SaveAs dialog should be used regardless of whether the
dashboard has been saved before.

For example, the following code saves a ManagedDashboard object:
DashboardDesigner.SaveDashboard(False)

Architect Property Syntax
The syntax for referencing this method of the DashboardDesigner control from Architect is:

Control:SaveDashboard(expression).

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A Boolean expression that indicates if the SaveAs dialog should be used regardless of whether the
dashboard has been saved before.

For example, the following code saves a ManagedDashboard object:
DashboardDesigner:SaveDashboard(False).

DataPA Developer

93

The CloseDashboard method
The CloseDashboard method allows you to close a dashboard currently open in the control.

AppBuilder Property Syntax
The syntax for referencing this method of the DashboardDesigner COM object is:

COMhdl-expression:CloseDashboard(expression)

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
A Boolean expression that if TRUE, the user will not be prompted to save any changes.

For example, the following code closes the open ManagedDashboard object without prompting the
user to save any changes:

chDashboardDesigner:CloseDashboard(True).

Visual Studio Property Syntax
The syntax for referencing this method of the ManagedDashboard control from Visual Studio is:

Control.CloseDashboard(expression)

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A Boolean expression that if TRUE, the user will not be prompted to save any changes.

For example, the following code closes the open ManagedDashboard object without prompting the
user to save any changes:

DashboardDesigner.CloseDashboard(True)

Architect Property Syntax
The syntax for referencing this method of the DashboardDesigner control from Architect is:

Control:CloseDashboard(expression).

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A Boolean expression that if TRUE, the user will not be prompted to save any changes.

For example, the following code closes the open ManagedDashboard object without prompting the
user to save any changes:

DashboardDesigner:CloseDashboard(True).

DataPA Developer

94

The RefreshQueries method
The RefreshQueries method creates refreshes all the queries in the currently open
ManagedDashboard control. The RefreshQueries method can be used to refresh the data, and cause
the dashboard to be rendered after it has been opened with the OpendelayedRender method.

AppBuilder Property Syntax
The syntax for referencing this method of the DashboardDesigner COM object is:

COMhdl-expression:RefreshQueries()

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

For example, the following code refreshes the queries in a ManagedDashboard object:
chDashboardDesigner:RefreshQueries().

Visual Studio Property Syntax
The syntax for referencing this method of the ManagedDashboard control from Visual Studio is:

Control.RefreshQueries()

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

For example, the following code refreshes the queries in a ManagedDashboard object:
DashboardDesigner.RefreshQueries()

Architect Property Syntax
The syntax for referencing this method of the DashboardDesigner control from Architect is:

Control:RefreshQueries().

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

For example, the following code refreshes the queries in a ManagedDashboard object:
DashboardDesigner:RefreshQueries().

DataPA Developer

95

The Print method
The Print method allows you to print a dashboard currently open in the control.

AppBuilder Property Syntax
The syntax for referencing this method of the DashboardDesigner COM object is:

COMhdl-expression:Print(expression)

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

expression
A Boolean expression that indicates if the print dialog should be shown before the dashboard is
printed.

For example, the following prints the open ManagedDashboard object without opening the print
dialog:

chDashboardDesigner:Print(True).

Visual Studio Property Syntax
The syntax for referencing this method of the ManagedDashboard control from Visual Studio is:

Control.Print(expression)

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A Boolean expression that indicates if the print dialog should be shown before the dashboard is
printed.

For example, the following prints the open ManagedDashboard object without opening the print
dialog:

DashboardDesigner.Print(True)

Architect Property Syntax
The syntax for referencing this method of the DashboardDesigner control from Architect is:

Control:Print(expression).

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

expression
A Boolean expression that indicates if the print dialog should be shown before the dashboard is
printed.

For example, the following prints the open ManagedDashboard object without opening the print
dialog:

DashboardDesigner:Print(True).

DataPA Developer

96

The PrintPreview method
The PrintPreview method allows you to open the Print Preview dialog for the dashboard currently
open in the control.

AppBuilder Property Syntax
The syntax for referencing this method of the DashboardDesigner COM object is:

COMhdl-expression:PrintPreview()

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

For example, the following opens the PrintPreview dialog for the open ManagedDashboard object:
chDashboardDesigner:PrintPreview().

Visual Studio Property Syntax
The syntax for referencing this method of the ManagedDashboard control from Visual Studio is:

Control.PrintPreview()

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

For example, the following opens the PrintPreview dialog for the open ManagedDashboard object:
DashboardDesigner.PrintPreview()

Architect Property Syntax
The syntax for referencing this method of the DashboardDesigner control from Architect is:

Control:PrintPreview().

Control
Is an expression that returns handle of a realised DashboardDesigner instance.

For example, the following opens the PrintPreview dialog for the open ManagedDashboard object:
DashboardDesigner:PrintPreview().

DataPA Developer

97

© DataPA

Managing Query Parameters

Managing Query Parameters
By default query parameters are added to a dashboard as a
control panel object. The parameter values used to filter the
query when it is refreshed are taken from these control panel
objects, and the queries are refreshed when the user enters or
selects a different value in this control.
However, when a dashboard is embedded into a third party
application, it is often the case that you want to provide the query parameter values from the third
party application, rather than the user controlling these values from an object on the dashboard.

Providing Query Parameters Values from an Application
When a query is refreshed in the dashboard, the DashboardDesigner control checks if there is a valid
control panel object for each required field in the query. For each required field that does not have a
valid control panel object, the DashboardDesigner fires an event to try and retrieve the query
parameter value from the calling application.
Thus, to provide query parameter values from the third party application rather than from a control
on the dashboard, follow these steps (each step is described in more detail later in the lesson):

1. Delete the control panel objects that provide query parameter values from the dashboard.
2. Provide code in your application to respond to the RequiredFieldValueRequest event to

provide the parameter value for the query.

Deleting Control Panel Objects
Follow these steps to remove control panel objects that provide query parameter values from the
dashboard.

1. Open the dashboard in the DataPA Enterprise Dashboard application.
2. Double click on the control panel in the dashboard to open the Control Panel dialog box.
3. Select the control panel object in the control panel.
4. Select the Delete button in the ribbon.
5. Press OK
6. Save the dashboard.

DataPA Developer

98

The RequiredFieldValueRequest Event in the AppBuilder
The RequiredFieldValueRequest event is raised by the DashboardDesigner control for each required
field of a query that does not have a related control panel object when that query is run. It provides
the developer with an opportunity to provide values for the required field.

Syntax for RequiredFieldValueRequest handler procedure
The syntax for responding to this event in the ManagedDashboard control from the AppBuilder is:

PROCEDURE COMhdl-expression.RequiredFieldValueRequest .

DEFINE INPUT PARAMETER p-sender AS COM-HANDLE NO-UNDO.
DEFINE INPUT PARAMETER p-e AS COM-HANDLE NO-UNDO.

[Code]
END PROCEDURE.

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

p-sender
Receives a handle to the DashboardDesigner that has raised the event.

p-e
Receives a handle to a RequiredFieldValueRequestEventArgs object that provides the interface to
interact with the event.

Code
The code to respond to the event.

For example, the following code responds to the RequiredFieldValueRequest by applying United
Kingdom to the country parameter :

PROCEDURE CtrlFrame.DashboardDesigner.RequiredFieldValueRequest .
DEFINE INPUT PARAMETER p-sender AS COM-HANDLE NO-UNDO.
DEFINE INPUT PARAMETER p-e AS COM-HANDLE NO-UNDO.

IF p-e:RequiredField:Name = "sports2000.Customer.Country" THEN DO:
p-e:COMValue = "United Kingdom".

END.

END PROCEDURE.

DataPA Developer

99

The RequiredFieldValueRequest Event in the Visual Studio
The RequiredFieldValueRequest event is raised by the DashboardDesigner control for each required
field of a query that does not have a related control panel object when that query is run. It provides
the developer with an opportunity to provide values for the required field.

Syntax for RequiredFieldValueRequest handler procedure
The syntax for responding to this event in the ManagedDashboard control from Visual Studio is:

Private Sub RequiredFieldValueRequestHandler(sender As Object, e As
DataPAEnterpriseDashboard.RequiredFieldValueRequestEventArgs)
Handles COMhdl-expression.RequiredFieldValueRequest

[Code]
End Sub

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

sender
Receives a handle to the DashboardDesigner that has raised the event.

e
Receives a handle to a RequiredFieldValueRequestEventArgs object that provides the interface to
interact with the event.

Code
The code to respond to the event.

For example, the following code responds to the RequiredFieldValueRequest by applying United
Kingdom to the country parameter :

Private Sub DashboardDesigner_RequiredFieldValueRequest(sender As
Object, e As
DataPAEnterpriseDashboard.RequiredFieldValueRequestEventArgs) Handles
DashboardDesigner.RequiredFieldValueRequest

If e.RequiredField.Name = "sports2000.Customer.Country" Then
e.Value = "United Kingdom"

End If
End Sub

DataPA Developer

100

The RequiredFieldValueRequest Event in the Architect
The RequiredFieldValueRequest event is raised by the DashboardDesigner control for each required
field of a query that does not have a related control panel object when that query is run. It provides
the developer with an opportunity to provide values for the required field.

Syntax for RequiredFieldValueRequest handler procedure
The syntax for responding to this event in the ManagedDashboard control from Architect is:

METHOD PRIVATE VOID QueryParamHandler(INPUT sender AS
System.Object, INPUT e AS
DataPAEnterpriseDashboard.RequiredFieldValueRequestEventArgs):

[Code]
END METHOD.

sender
Receives a handle to the DashboardDesigner that has raised the event.

e
Receives a handle to a RequiredFieldValueRequestEventArgs object that provides the interface to
interact with the event.

Code
The code to respond to the event.

For example, the following code responds to the RequiredFieldValueRequest by applying United
Kingdom to the country parameter :

METHOD PRIVATE VOID QueryParamHandler(INPUT sender AS System.Object,
INPUT e AS
DataPAEnterpriseDashboard.RequiredFieldValueRequestEventArgs):
IF e:RequiredField:Name = "sports2000.Customer.Country" THEN DO:

e:Value = "United Kingdom".
END.
RETURN.

END METHOD.

DataPA Developer

101

© DataPA

Responding to Drill Downs

Responding to Drill Downs
When embedded into a third party application, it is common to want the containing application to
respond to the user clicking a specific area of a chart. The DashboardDesigner control has a
BeforeDrillDown event which allows the containing application to respond to drill down events.

DataPA Developer

102

The BeforeDrillDown Event in the AppBuilder
The BeforeDrillDown event is raised by the DashboardDesigner when the user clicks on the sensitive
area of a chart that has a drill down defined.

Syntax for BeforeDrillDown handler procedure
The syntax for referencing this method of the ManagedDashboard control from the AppBuilder is:

PROCEDURE COMhdl-expression.BeforeDrillDown .

DEFINE INPUT PARAMETER p-sender AS COM-HANDLE NO-UNDO.
DEFINE INPUT PARAMETER p-e AS COM-HANDLE NO-UNDO.

[Code]
END PROCEDURE.

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

p-sender
Receives a handle to the DashboardDesigner that has raised the event.

p-e
Receives a handle to a DrillDownEventArgs object that provides the interface to interact with the
event.

Code
The code to respond to the event.

For example, the following code responds to the BeforeDrillDown by showing a message with the
value selected:

PROCEDURE CtrlFrame.DashboardDesigner.BeforeDrillDown .
DEFINE INPUT PARAMETER p-sender AS COM-HANDLE NO-UNDO.
DEFINE INPUT PARAMETER p-e AS COM-HANDLE NO-UNDO.

MESSAGE p-e:DrillDown:ColumnValue VIEW-AS ALERT-BOX.
p-e:Cancel = True.

END PROCEDURE..

DataPA Developer

103

The BeforeDrillDown Event in the Visual Studio
The BeforeDrillDown event is raised by the DashboardDesigner when the user clicks on the sensitive
area of a chart that has a drill down defined.

Syntax for RequiredFieldValueRequest handler procedure
The syntax for responding to this event in the ManagedDashboard control from Visual Studio is:

Private Sub BeforeDrillDownHandler(sender As Object, e As
DataPAEnterpriseDashboard.DrillDownEventArgs) Handles COMhdl-
expression.BeforeDrillDown

[Code]
End Sub

COMhdl-expression
Is an expression that returns a component handle of a realised DashboardDesigner instance.

sender
Receives a handle to the DashboardDesigner that has raised the event.

e
Receives a handle to a DrillDownEventArgs object that provides the interface to interact with the
event.

Code
The code to respond to the event.

For example, the following code responds to the BeforeDrillDown by showing a message with the
value selected:

Private Sub BeforeDrillDownHandler(sender As System.Object, e As
DataPAEnterpriseDashboard.DrillDownEventArgs) Handles
DashboardDesigner.BeforeDrillDown
MsgBox(e.DrillDown.ColumnValue)

End Sub

DataPA Developer

104

The BeforeDrillDown Event in the Architect
The BeforeDrillDown event is raised by the DashboardDesigner when the user clicks on the sensitive
area of a chart that has a drill down defined.

Syntax for RequiredFieldValueRequest handler procedure
The syntax for responding to this event in the ManagedDashboard control from Architect is:

METHOD PRIVATE VOID QueryParamHandler(INPUT sender AS
System.Object, INPUT e AS
DataPAEnterpriseDashboard.DrillDownEventArgs):

[Code]
END METHOD.

sender
Receives a handle to the DashboardDesigner that has raised the event.

e
Receives a handle to a DrillDownEventArgs object that provides the interface to interact with the
event.

Code
The code to respond to the event.

For example, the following code responds to the BeforeDrillDown by showing a message with the
value selected:

METHOD PRIVATE VOID DrillDownHandler(INPUT sender AS System.Object,
INPUT e AS DataPAEnterpriseDashboard.DrillDownEventArgs):
MESSAGE e:DrillDown:ColumnValue VIEW-AS ALERT-BOX.
e:Cancel = TRUE.
RETURN.

END METHOD.

DataPA Developer

105

© DataPA

DataPA Developer

Lesson 5
DataPA Application Object

DataPA Application Object

Introduction
The DataPA Application objects are a set of objects that allow a developer to use DataPA to run
queries and export the information into applications on the client machine.

Learning Objectives
When you complete this lesson you should be able to:

 Understand the hierarchy of the DataPA Application Objects.
 Create and manage the DataPA Application Objects in an application.
 Use the DataPA Application Objects to export to Excel and Access.
 Respond to events from the DataPA Application Objects.
 Understand how to share the objects for increased performance.

Prerequisites
Before you begin this lesson you should be able to:

 Create a GUI application using the development tool of your choice.
 Use methods and properties on objects in the development tool.

DataPA Developer

106

© DataPA

Introducing the DataPA Application
Objects

DataPA.Application

DataPA.Query DataPA.Systems

Introducing the DataPA Application Objects
DataPA provides a suite of Application objects to present a wide range of functionality to the end
user. These objects can be used to run, create and modify queries.

The DataPA Application Objects
Object Definition & Usage

DataPA.Application The DataPA.Application object provides the core functionality for
DataPA and is used for all of the DataPA interfaces. It provides the
functionality to manage the Systems, Links and Subjects built by the
administrator and used as the basis for all queries. It also provides the
functionality to run queries. An event on the DataPA.Application object
informs a containing procedure that data has been retrieved,
presenting that data to be handled by the calling procedure.

DataPA.Query The DataPA.Query object represents a single open query. It cannot be
created by the developer, but is available from a property of the
DataPA.Application object if a query is currently open. It provides
properties and methods to allow the developer to manage the query
and run the query.

DataPA.Systems The DataPA.Systems object is a collection that provides access to each
of the defined systems in DataPA. It cannot be created by the
developer, but is available from a property of the DataPA.Application
object. The DataPA.Systems object allows the developer to manage
connection security to the AppServer and will be discussed in more
details in Lesson 6: DataPA Security.

DataPA Developer

107

© DataPA

Creating DataPA Objects

DataPA.Application

AppBuilder: CREATE “DataPA.Application" chDataPA.
Visual Studio: DataPA = New DataPA.Application
Architect: DataPA = NEW DataPA.ApplicationClass().

Creating DataPA Object
Like using the PAReports and DashboardDesigner objects, we must instantiate the objects before we
can use them. Unlike the PAReports and DashboardDesigner objects, the DataPA Automation objects
are non visual objects. As such, we cannot drag them from a toolbox or palette and so must create
the code to instantiate them manually.

AppBuilder - The Create Automation Object Statement
The Create Automation object statement launches a new instance of an object and creates a
connection to it. The syntax of the Create Automation Object statement is as follows:

CREATE expression COMhdl-expression

expression
A character string expression that evaluates to DataPA.Application

COMhdl-expression
A COM-HANDLE variable that receives the COM handle to the instantiated Automation object.

For example:

CREATE "DataPA.Application" chDataPA.

DataPA Developer

108

Visual Studio – Configuring to use the Application Object
If you have not added a DataPA Reports Control to the project already and want to use the DataPA
Application Objects then you will need to add references to these manually before you can do so.

Follow these steps to add the appropriate references:

1. Go into Project properties and select the References tab.
2. Select the Browse tab and click the Add button.
3. Browse to the bin folder under the DataPA installation folder.
4. Add references to the following dll which is located in the bin folder under the DataPA

installation folder:
Interop.DataPA.dll

5. Click OK.

You should now be able to reference the DataPA Application objects.

The syntax of the creation of an object statement is as follows:

Objecthandle = expression

expression
A character string expression that evaluates to DataPA.Application object

Objecthandle
A Handle variable that receives the handle to the instantiated object.

For example:

DataPA = New DataPA.Application

DataPA Developer

109

Architect – Configuring to use the Application Object
If you have not added a DataPA Reports control or Enterprise Dashboard control to the project
already and want to use the DataPA Application Objects then you will need to add references to these
manually before you can do so.

Follow these steps to add the appropriate references:

1. Import the following dll’s into your ABL project folder by selecting File and then Import from
the menu in Architect. These files are located in the bin folder under the DataPA installation
folder:
Interop.ADODB.dll
Interop.ADOR.dll
Interop.DataPA.dll
Interop.MSXML2.dll
Interop.OutlookBar.dll
Interop.RDS.dll
Interop.SubclassingSink.dll
Interop.VBA.dll

2. Add an ABL form to your project if you do not already have one.
3. Add a control to the ABL form if this has not already been done. This should make referenced

assemblies node appear in resources treeview.
4. Right click on the referenced assemblies in the resources treeview and select add assembly

reference option from the pop up menu.
5. Select the Local Assemblies tab and browse to the current project folder.
6. Add the dll’s that were imported in step 1 above.

You should now be able to reference the DataPA Application objects.

The syntax of the creation of an object statement is as follows:

Objecthandle = expression

expression
A character string expression that evaluates to DataPA.Application object

Objecthandle
A Handle variable that receives the handle to the instantiated object.

For example:

DataPA = NEW DataPA.ApplicationClass().

DataPA Developer

110

© DataPA

Deleting DataPA Objects

DataPA.Application

AppBuilder: RELEASE OBJECT chDataPA.
Visual Studio: DataPA = Nothing
Architect: DataPA = ?.

Deleting DataPA Objects
Unlike static Progress widgets, DataPA Automation objects are scoped to the session. This means that
if we do not explicitly delete the objects, they will stay resident in memory until the end of the
session. This can lead to memory leaks, so we must ensure that we always delete objects once we
have finished with them.

AppBuilder Syntax
The RELEASE Object statement destroys a DataPA automation object and releases the memory it
occupied. The syntax for the RELEASE Object handle is as follows:

RELEASE OBJECT COM-hdl-var [NO-ERROR]

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA Automation object.

NO-ERROR
Specifies that any errors that occur in the attempt to release the object are suppressed. After the
RELEASE OBJECT statement completes, you can check the ERROR-STATUS system handle for
information on any errors that occurred.

For example:

RELEASE OBJECT chDataPA NO-ERROR.

Visual Studio Syntax
Setting a DataPA object to Nothing in Visual Studio flags it to be released from memory. The syntax
for this as follows:

DataPA = Nothing

Engine
A variable that references a valid DataPA Application object.

DataPA Developer

111

Architect Syntax
The DELETE Object statement destroys a DataPA object and releases the memory it occupied. The
syntax for the DELETE Object handle is as follows:

IF VALID-OBJECT(ApplicationObj) THEN DELETE OBJECT ApplicationObj.

EngineObj
A variable that references a valid DataPA Application object.

DataPA Developer

112

© DataPA

Using DataPA.Application Object

DataPA.Application

Using DataPA.Application Object
The DataPA.Application object provides the core functionality for DataPA to mange all aspects of
creating and running queries. The DataPA.Application object does not contain any functionality to
export or display data it retrieves. The Application object exposes properties and methods that allow
the developer to control all aspects of creating and managing queries. These properties and methods
are described below.

The ShowMain Method
The ShowMain method on the application object allows the developer to display the DataPA main
window.

AppBuilder Syntax

COM-hdl-var:ShowMain(modal, OwnerForm).

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

modal
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

OwnerForm
A com-handle that references the form that will be deemed the parent to the DataPA main form. You
can pass “?” in to this parameter from Progress GUI as the COM-HANDLE of a Progress window is is
not readily available.

For example, in Maintenance.w we have the code:

chDataPA:ShowMain(1, “?”).

DataPA Developer

113

Visual Studio Syntax

Application.ShowMain(modal, OwnerForm)

Application
A variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

OwnerForm
A com-handle that references the form that will be deemed the parent to the DataPA main form.
For example:

Application.ShowMain(1, Nothing)

Architect Syntax

Application:ShowMain(expression, OwnerForm)

Application
A variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window. Pass “?” if none is to be used.

Owner form
The parent form to be used for the main form of DataPA. Pass “?” if none is to be used.

For example:

Application:ShowMain(1,"?").

DataPA Developer

114

The ShowSetup Method
The ShowSetup method on the application object allows the developer to display the DataPA setup
window.

AppBuilder Syntax

COM-hdl-var:ShowSetup(expression).

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

For example:

chDataPA:ShowSetup(1).

Visual Studio Syntax

Application.ShowSetup(expression)

Application
A variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

For example:

Application.ShowSetup(1)

Architect Syntax

Application:ShowSetup(expression).

Application
A variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window. Pass “?” if none is to be used.

Owner form
The parent form to be used for the main form of DataPA. Pass “?” if none is to be used.

DataPA Developer

115

For example:

Application:ShowSetup(1, “?”).

The ShowSecurity Method
The ShowSecurity method on the application object allows the developer to display the DataPA
security window.

AppBuilder Syntax

COM-hdl-var:ShowSecurity(expression).

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

For example, in Maintenance.w we have the code:

chDataPA:ShowSecurity(1).

Visual Studio Syntax

Application.ShowSecurity(expression)

Application
A variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

For example:

Application.ShowSecurity(1)

DataPA Developer

116

Architect Syntax

Application:ShowSecurity(expression)

Application
A variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window. Pass “?” if none is to be used.

Owner form
The parent form to be used for the main form of DataPA. Pass “?” if none is to be used.

For example:

Application:ShowSecurity(1,”?”).

DataPA Developer

117

The ShowAbout Method
The ShowAbout method on the application object allows the developer to display the DataPA main
about.

AppBuilder Syntax

COM-hdl-var:ShowAbout(expression).

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

For example:

chDataPA:ShowAbout(1).

Visual Studio Syntax

Application.ShowAbout(expression)

Application
A variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

For example:

Application.ShowAbout(1)

DataPA Developer

118

Architect Syntax

Application:ShowAbout(expression)

Application
A variable that references a valid DataPA.Application object.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window. Pass “?” if none is to be used.

Owner form
The parent form to be used for the main form of DataPA. Pass “?” if none is to be used.

For example:

Application:ShowAbout(1, “?”).

The ShowExplore Method
The ShowExplore method on the application object allows the developer to display the DataPA
subject explorer window.

AppBuilder Syntax

COM-hdl-var:ShowExplore(Select, Search[, System] [, Subject]).

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

Select
A logical expression indicating whether or not you wish to show the select panel in the subject
explorer window.

Search
A logical expression indicating whether or not you wish to show the search panel in the subject
explorer window.

System
An optional string expression that should contain the name of an existing system. If included, the list
of subjects will be limited to a particular system.

Subject
An optional string expression to indicate a particular subject with the subject ID. If included the
specified subject will be selected initially.

DataPA Developer

119

Visual Studio Syntax

Application.ShowExplore(Select, Search[, System] [, Subject])

Application
A variable that references a valid DataPA.Application object.

Select
A logical expression indicating whether or not you wish to show the select panel in the subject
explorer window.

Search
A logical expression indicating whether or not you wish to show the search panel in the subject
explorer window.

System
An optional string expression that should contain the name of an existing system. If included, the list
of subjects will be limited to a particular system.

Subject
An optional string expression to indicate a particular subject with the subject ID. If included the
specified subject will be selected initially.

Architect Syntax

Application:ShowExplore(Select, Search, System , Subject).

Application
A variable that references a valid DataPA.Application object.

Select
A logical expression indicating whether or not you wish to show the select panel in the subject
explorer window.

Search
A logical expression indicating whether or not you wish to show the search panel in the subject
explorer window.

System
An optional string expression that should contain the name of an existing system. If included, the list
of subjects will be limited to a particular system. Pass “?” if none is to be used.

Subject
An optional string expression to indicate a particular subject with the subject ID. If included the
specified subject will be selected initially. Pass “?” if none is to be used.

DataPA Developer

120

The ShowQueryWizard Method
The ShowQueryWizard method on the application object allows the developer to display the DataPA
Query Wizard screen to create a new query or modify an existing one.

AppBuilder Syntax

[Query—COM-hdl-var =] COM-hdl-var:ShowQueryWizard
([modify-Query—COM-hdl-var], expression).

Query-COM-hdl-var
A COM-HANDLE variable that will reference the query object that results from the query wizard if
completed successfully.

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

modify-Query—COM-hdl-var
An optional COM-HANDLE variable that references a valid DataPA.Query object. If included, the query
wizard will modify the referenced query, otherwise, the query wizard will create a new query.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

Visual Studio Syntax

[Query=] Application.ShowQueryWizard (modifyQuery, expression)

Query
A variable that will reference the query object that results from the query wizard if completed
successfully.

Application
A variable that references a valid DataPA.Application object.

modifyQuery
An optional variable that references a valid DataPA.Query object. If included, the query wizard will
modify the referenced query, otherwise, the query wizard will create a new query.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window.

DataPA Developer

121

Architect Syntax

[Query=] Application:ShowQueryWizard (modifyQuery, expression, owner
form)

Query
A variable that will reference the query object that results from the query wizard if completed
successfully.

Application
A variable that references a valid DataPA.Application object.

modifyQuery
An optional variable that references a valid DataPA.Query object. If included, the query wizard will
modify the referenced query, otherwise, the query wizard will create a new query.

expression
An integer string expression that evaluates to either 1 or 0. 1 indicates that the window should be
shown modal, that is the user cannot return to the calling window without shutting the opened
window. 0 indicates that the window should be shown no-modal, that is the can return to the calling
window without shutting the opened window. Pass “?” if none is to be used.

Owner form
The parent form to be used for the main form of DataPA. Pass “?” if none is to be used.

DataPA Developer

122

The LoadQuery Method
The LoadQuery method loads a query from a disk resident file.

AppBuilder Syntax

[Query-COM-hdl-var =] COM-hdl-var:LoadQuery(FileName).

Query-COM-hdl-var
A COM-HANDLE variable that will reference the query object that results from the load operation if
completed successfully.

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

FileName
A string expression that resolves to a fully qualified operating system file that contains a query.

For example:

chQuery = chDataPA:LoadQuery (“C:\OpenEdge\WRK\Customers.qpa”).

Visual Studio Syntax

[Query =] Application.LoadQuery(FileName)

Query
A variable that will reference the query object that results from the load operation if completed
successfully.

Application
A variable that references a valid DataPA.Application object.

FileName
A string expression that resolves to a fully qualified operating system file that contains a query.

For example:

Query = Application.LoadQuery (“C:\OpenEdge\WRK\Customers.qpa”)

DataPA Developer

123

Architect Syntax

[Query =] Application:LoadQuery(FileName)

Query
A variable that will reference the query object that results from the load operation if completed
successfully.

Application
A variable that references a valid DataPA.Application object.

FileName
A string expression that resolves to a fully qualified operating system file that contains a query.

For example:

Query = Application:LoadQuery (“C:\OpenEdge\WRK\Customers.qpa”).

DataPA Developer

124

The Query property
The query property on the DataPA.Application object allows the developer to set and retrieve the
current loaded query.

AppBuilder Syntax

COM-hdl-var:Query.

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

For example, if we wanted to retrieve the handle of the current loaded query, we could use the code:

chQuery = chDataPA:Query.

If we wanted to set the current loaded query for the DataPA.Application object, we could use the
code:

chDataPA:Query = chQuery.

Visual Studio Syntax

Application.Query

Application
A variable that references a valid DataPA.Application object.

For example, if we wanted to retrieve the handle of the current loaded query, we could use the code:

Query = Application.Query

If we wanted to set the current loaded query for the DataPA.Application object, we could use the
code:

Application.Query = Query

Architect Syntax

Application:Query

Application
A variable that references a valid DataPA.Application object.

For example, if we wanted to retrieve the handle of the current loaded query, we could use the code:

Query = Application:Query().

If we wanted to set the current loaded query for the DataPA.Application object, we could use the
code:

Application:Query = Query().

DataPA Developer

125

© DataPA

Using DataPA.Query Object

DataPA.Query

Using DataPA.Query Object
The DataPA.Query object represents a single DataPA query. It provides an interface to allow the
developer to maintain the query and run the query. Dealing with parameters on the query object is
covered in depth in Lesson 5: Managing Query Parameters. The following section details some of the
query parameters and methods that are useful for running queries.

The Query Name Parameter
The Name property on the DataPA.Query object allows the developer to set and retrieve the name of
the query.

Appbuilder Syntax

COM-hdl-var:Name.

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

For example, if we wanted to retrieve the name of the query, we could use the code:

cName = chQuery:Name.

If we wanted to set the Name of the DataPA.Query object, we could use the code:

chQuery:Name = cName.

DataPA Developer

126

Visual Studio Syntax

Query.Name

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to retrieve the name of the query, we could use the code:

sName = chQuery.Name

If we wanted to set the Name of the DataPA.Query object, we could use the code:

Query.Name = sName

Architect Syntax

Query:Name

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to retrieve the name of the query, we could use the code:

sName = chQuery:Name.

If we wanted to set the Name of the DataPA.Query object, we could use the code:

Query:Name = sName.

DataPA Developer

127

The Query Description Parameter
The Description property on the DataPA.Query object allows the developer to set and retrieve the
Description of the query.

AppBuilder Syntax

COM-hdl-var:Description.

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

For example, if we wanted to retrieve the Description of the query, we could use the code:

cDescription = chQuery:Description.

If we wanted to set the Description of the DataPA.Query object, we could use the code:

chQuery:Description = cDescription.

Visual Studio Syntax

Query.Description

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to retrieve the Description of the query, we could use the code:

sDescription = Query.Description

If we wanted to set the Description of the DataPA.Query object, we could use the code:

Query.Description = sDescription

Architect Syntax

Query:Description

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to retrieve the Description of the query, we could use the code:

sDescription = Query:Description.

If we wanted to set the Description of the DataPA.Query object, we could use the code:

Query:Description = sDescription.

DataPA Developer

128

The Run Query Method
The Run Query method on the DataPA.Query object allows the developer to open the run query
wizard to run the query.

AppBuilder Syntax

COM-hdl-var:RunQuery.

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

For example, if we wanted to run the query, we could use the code:

chQuery:RunQuery.

Visual Studio Syntax

Query.RunQuery

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to run the query, we could use the code:

Query.RunQuery

Architect Syntax

Query:RunQuery(Object).

Query
A variable that references a valid DataPA.Query object.

Object
A used to pass the parent form for the run query wizard in DataPA. This is not supported in Architect
but an empty object should be passed as per the example below.

For example, if we wanted to run the query, we could use the code:

DEFINE VARIABLE cObject as System.Object NO-UNDO.
Query:RunQuery(cObject).

DataPA Developer

129

The Query FileName Parameter
The FileName property on the DataPA.Query object allows the developer to set and retrieve the name
of the file the query will be saved to or was opened from.

AppBuilder Syntax

COM-hdl-var:FileName.

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

For example, if we wanted to set the FileName of the DataPA.Query object, we could use the code:

chQuery:FileName = cFileName.

Visual Studio Syntax

Query.FileName

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to set the FileName of the DataPA.Query object, we could use the code:

Query.FileName = sFileName

Architect Syntax

Query:FileName

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to set the FileName of the DataPA.Query object, we could use the code:

Query:FileName = cFileName.

DataPA Developer

130

The Query Save Method
The Query Save method on the DataPA.Query object allows the developer to save the query to disk.

AppBuilder Syntax

COM-hdl-var:Save.

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

For example, if we wanted to save the query to the file returned by chQuery:FileName, we could use
the code:

chQuery:Save.

Visual Studio Syntax

Query.Save

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to save the query to the file returned by Query.FileName, we could use the
code:

Query.Save

Architect Syntax

Query:Save().

Query
A variable that references a valid DataPA.Query object.

For example, if we wanted to save the query to the file returned by Query:FileName, we could use the
code:

Query:Save().

DataPA Developer

131

© DataPA

Sharing the Application Object

DataPA.Application

Sharing DataPA.Application Object
When the application object is created it runs through an initialisation routine. Depending on your
configuration, this routine may involve several AppServer calls and as such can be costly in terms of
performance if repeated unnecessarily. As such, it is good practice to make sure that your application
creates a single DataPA.Application object, which is used by all procedures that use PAReports or
DataPA Automation objects. For the DataPA objects this is simply a case of sharing the handles for the
DataPA.Application object.

Assigning a DataPA.Application Object to a PAReports Object
The PAReports Object has a property called ApplicationObject that references the DataPA.Application
object used by the PAReports object. This property can be assigned a value BEFORE the Initialise
method is called on the PAReports object. If this property has been assigned to a valid
DataPA.Application object when the Initialise method is called, the PAReports object will use that
DataPA.Application object throughout its life. Otherwise, the PAReports Object will create its own
instance of the DataPA.Application object when the Initialise method is called.

AppBuilder Syntax

COM-hdl-var:ApplicationObject.

COM-hdl-var
A COM-HANDLE variable that references a valid PAReports object.

For example, the following code shows how you can share a DataPA.Application object:

DEFINE VARIABLE hApp AS COM-HANDLE NO-UNDO.

CREATE “DataPA.Application” hApp.
PAReports:ApplicationObject = hApp.

DataPA Developer

132

Visual Studio Syntax

PAReports.ApplicationObject

PAReports
A variable that references a valid PAReports object.

For example, the following code shows how you can share a DataPA.Application object:

dim hApp AS DataPA.Application

hApp = New DataPA.Application
PAReports:ApplicationObject = hApp

Architect Syntax

PAReports.ApplicationObject

PAReports
A variable that references a valid PAReports object.

For example, the following code shows how you can share a DataPA.Application object:

DEFINE VARIABLE hApp AS DataPA.Application NO-UNDO.

hApp = New DataPA.ApplicationClass().
PAReports:ApplicationObject = hApp.

Assigning a DataPA.Application to a DashboardDesigner Object
The DashboardDesigner Object has a property called DataPAApplication that references the
DataPA.Application object used by the DashboardDesigner object. This property can be assigned a
value BEFORE the Initialise method is called on the DashboardDesigner object. If this property has
been assigned to a valid DataPA.Application object when the Initialise method is called, the
DashboardDesigner object will use that DataPA.Application object throughout its life. Otherwise, the
DashboardDesigner object will create its own instance of the DataPA.Application object when the
Initialise method is called.

AppBuilder Syntax

COM-hdl-var:DataPAApplication.

COM-hdl-var
A COM-HANDLE variable that references a valid DashboardDesigner object.

For example, the following code shows how you can share a DataPA.Application object:
DEFINE VARIABLE hApp AS COM-HANDLE NO-UNDO.

CREATE “DataPA.Application” hApp.
DashboardDesigner:DataPAApplication = hApp.

DataPA Developer

133

Visual Studio Syntax

DashboardDesigner.DataPAApplication

DashboardDesigner
A variable that references a valid DashboardDesigner object.

For example, the following code shows how you can share a DataPA.Application object:

dim hApp AS DataPA.Application

hApp = New DataPA.Application
DashboardDesigner:DataPAApplication = hApp

Architect Syntax

DashboardDesigner.DataPAApplication

DashboardDesigner
A variable that references a valid DashboardDesigner object.

For example, the following code shows how you can share a DataPA.Application object:

DEFINE VARIABLE hApp AS DataPA.Application NO-UNDO.

hApp = New DataPA.ApplicationClass().
DashboardDesigner:DataPAApplication = hApp.

DataPA Developer

134

© DataPA

DataPA Developer

Lesson 6
Managing Query Parameters

Managing Query Parameters
We have already seen in the previous lessons how we can use the DataPA.Query object to open and
run queries. This lesson develops those techniques so we can manage query parameters and run
queries without DataPA prompting the user for input. These techniques are applicable to DataPA
queries run from PAReports objects and DataPA Application Objects.

Learning Objectives
When you complete this lesson you should be able to:

 List the input parameters that a query requires to run
 Programmatically set input parameters values
 Programmatically add query parameters
 Use the query parameters to hide sections of the run query wizard

Prerequisites
Before you begin this lesson you should be able to:

 Create a GUI application using Progress
 Use methods and properties on objects
 Use the DataPA Application objects and PAReports controls to run queries

DataPA Developer

135

© DataPA

Listing Required Values

Listing Required Values
Required values occur when conditions are created against the subject or query, that have been
designated as Required Values in either the subject or query wizard. In normal operation, DataPA
prompts the user for values to satisfy these required values in the query wizard at runtime. However,
when imbedding DataPA, we may often wish the application to set these required values, for instance
if we are designing an invoice viewer, we may want the Application to select the Invoice to be
displayed.

The Required Values Collection
The Query object has a property called RequiredFields, that returns a collection of Field objects, one
for each value that is required to satisfy the query parameters.

AppBuilder Syntax

COM-hdl-var:RequiredFields

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

The RequiredFields property returns a COM-Handle that represents the RequiredFields collection.

The RequiredFields collection has one property and one method that allow us to retrieve information
about the required fields. First is the Count property that retrieves the number of required values for
the query. The syntax for the Count property is as follows:

COM-hdl-var:Count

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query.RequiredFields object.

DataPA Developer

136

To retrieve individual required fields, the required fields property has an Item method. The Item
method has the following syntax:

COM-hdl-var:item(expression)

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query.RequiredFields object.

expression
An integer or string expression that resolves to either the position of the required field in the list of
required fields, or the name of the required field.

The Item method returns a COM-handle that represents a DataPA.Fields object.

The table below summarised the properties of the fields object:

Property Type Description

Name Character The name of the required field

Label Character The label used when prompting for the required field

Description Character The description used when prompting for the required field

DataType Character The Progress data type of the required field

Mandatory Logical Indicates whether the required field is mandatory or not

Format Character The Progress format of the required field

The following example shows a message for each field in a query with the name, label and
description.

DEFINE VARIABLE iNumParams AS INTEGER NO-UNDO.
DEFINE VARIABLE ix AS INTEGER NO-UNDO.

ASSIGN iNumParams = chQuery:RequiredFields:COUNT.

IF iNumParams > 0 THEN REPEAT WITH ix = 1 TO iNumParams:
MESSAGE chQuery:RequiredFields:ITEM(ix):NAME SKIP

chQuery:RequiredFields:ITEM(ix):LABEL SKIP
chQuery:RequiredFields:ITEM(ix):DESCRIPTION

VIEW-AS ALERT-BOX INFO BUTTONS OK.
END.

DataPA Developer

137

Visual Studio Syntax

Query.RequiredFields

Query
A variable that references a valid DataPA.Query object.

The RequiredFields property returns a handle that represents the RequiredFields collection.

The RequiredFields collection has one property and one method that allow us to retrieve information
about the required fields. First is the Count property that retrieves the number of required values for
the query. The syntax for the Count property is as follows:

RequiredFields.Count

RequiredFields
A variable that references a valid DataPA.Query.RequiredFields object.

To retrieve individual required fields, the required fields property has an Item method. The Item
method has the following syntax:

RequiredFields.item(expression)

RequiredFields
A variable that references a valid DataPA.Query.RequiredFields object.

expression
An integer or string expression that resolves to either the position of the required field in the list of
required fields, or the name of the required field.

The Item method returns a handle that represents a DataPA.Fields object.

The table below summarised the properties of the fields object:

Property Type Description

Name Character The name of the required field

Label Character The label used when prompting for the required field

Description Character The description used when prompting for the required field

DataType Character The Progress data type of the required field

Mandatory Logical Indicates whether the required field is mandatory or not

Format Character The Progress format of the required field

DataPA Developer

138

The following example shows a message for each field in a query with the name, label and
description.

dim iNumParams as integer
dim ix as integer

iNumParams = Query.RequiredFields.COUNT

IF iNumParams > 0 then
For ix = 1 to iNumParams

msgbox Query.RequiredFields.ITEM(ix).NAME
Query.RequiredFields.ITEM(ix).LABEL
Query.RequiredFields.ITEM(ix).DESCRIPTION

Next ix
end if

Architect Syntax

Query:RequiredFields

Query
A variable that references a valid DataPA.Query object.

The RequiredFields property returns a handle that represents the RequiredFields collection.

The RequiredFields collection has one property and one method that allow us to retrieve information
about the required fields. First is the Count property that retrieves the number of required values for
the query. The syntax for the Count property is as follows:

RequiredFields:Count

RequiredFields
A variable that references a valid DataPA.Query.RequiredFields object.

To retrieve individual required fields, the required fields property has an Item method. The Item
method has the following syntax:

RequiredFields:item(expression)

RequiredFields
A variable that references a valid DataPA.Query.RequiredFields object.

expression
An integer or string expression that resolves to either the position of the required field in the list of
required fields, or the name of the required field.

The Item method returns a handle that represents a DataPA.Fields object.

DataPA Developer

139

The table below summarised the properties of the fields object:

Property Type Description

Name Character The name of the required field

Label Character The label used when prompting for the required field

Description Character The description used when prompting for the required field

DataType Character The Progress data type of the required field

Mandatory Logical Indicates whether the required field is mandatory or not

Format Character The Progress format of the required field

The following example shows a message for each field in a query with the name, label and
description.

DEFINE VARIABLE iNumParams AS INTEGER NO-UNDO.
DEFINE VARIABLE ix AS INTEGER NO-UNDO.

ASSIGN iNumParams = Query:RequiredFields:COUNT().

IF iNumParams > 0 THEN REPEAT WITH ix = 1 TO iNumParams:
MESSAGE Query:RequiredFields:ITEM(ix):NAME SKIP

Query:RequiredFields:ITEM(ix):LABEL SKIP
Query:RequiredFields:ITEM(ix):DESCRIPTION

VIEW-AS ALERT-BOX INFO BUTTONS OK.
END.

DataPA Developer

140

© DataPA

Setting Required Values

AppBuilder: chQuery:SetRequiredValue(“sports2000.customer.name”,”Golf”).

Visual Studio: Query.SetRequiredValue(“sports2000.customer.name”,”Golf”)

Architect: Query:SetRequiredValue(“sports2000.customer.name”,”Golf”).

Setting Required Valies
Often we will want to programmatically set the value of required fields for a query rather than letting
the user enter the values in the query wizard.

The SetRequiredField Method
The SetRequiredField method allows us to programmatically set a value of a required field. If a
required field value is set programmatically BEFORE we call the RunQuery method, the query wizard
will not prompt the user for that value.

AppBuilder Syntax

COM-hdl-var:SetRequiredValue(FieldName, value)

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

FieldName
A character expression that resolves to a field name. The field name should match exactly the name
value returned from the Field object.

Value
An expression that represents the value you wish to assign to the field. The value should be the data
type specified by the DataType property of the Field object.

For example, the following code sets the value of the sports2000.customer.name required field to
Golf.

chQuery:chQuery:SetRequiredValue(“sports2000.customer.name”,”Golf”)

DataPA Developer

141

Visual Studio Syntax

Query.SetRequiredValue(FieldName, value)

Query
A variable that references a valid DataPA.Query object.

FieldName
A character expression that resolves to a field name. The field name should match exactly the name
value returned from the Field object.

Value
An expression that represents the value you wish to assign to the field. The value should be the data
type specified by the DataType property of the Field object.

For example, the following code sets the value of the sports2000.customer.name required field to
Golf.

Query.SetRequiredValue(“sports2000.customer.name”,”Golf”)

Architect Syntax

Query:SetRequiredValue(FieldName, value)

Query
A variable that references a valid DataPA.Query object.

FieldName
A character expression that resolves to a field name. The field name should match exactly the name
value returned from the Field object.

Value
An expression that represents the value you wish to assign to the field. The value should be the data
type specified by the DataType property of the Field object.

For example, the following code sets the value of the sports2000.customer.name required field to
Golf.

Query:SetRequiredValue(“sports2000.customer.name”,”Golf”).

DataPA Developer

142

© DataPA

Skipping Required Values

AppBuilder: chQuery:SetSkipField(“sports2000.customer.name”).

Visual Studio: Query.SetSkipField(“sports2000.customer.name”)

Architect: Query:SetSkipField(“sports2000.customer.name”).

Skipping Required Values
Required values can sometimes be optional. If
the administrator did not check the mandatory
option when creating the required field, the
user is given the option to skip the required field.

The SetSkipField method
You can programmatically skip a required field
using the SetSkipField method. If the
SetSkipField method is called on a non-
mandatory required field BEFORE the
RunQuery method is called, the required field
will not be prompted for by the run query wizard.

AppBuilder Syntax

COM-hdl-var:SetSkipValue(FieldName)

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

FieldName
A character expression that resolves to a field name. The field name should match exactly the name
value returned from the Field object.

For example, the following code tells the Run Query Wizard to skip the required field
sports2000.customer.name.

chQuery:chQuery:SetSkipValue(“sports2000.customer.name”)

DataPA Developer

143

Visual Studio Syntax

Query.SetSkipValue(FieldName)

Query
A variable that references a valid DataPA.Query object.

FieldName
A character expression that resolves to a field name. The field name should match exactly the name
value returned from the Field object.

For example, the following code tells the Run Query Wizard to skip the required field
sports2000.customer.name.

Query.SetSkipValue(“sports2000.customer.name”)

Architect Syntax

Query:SetSkipValue(FieldName)

Query
A variable that references a valid DataPA.Query object.

FieldName
A character expression that resolves to a field name. The field name should match exactly the name
value returned from the Field object.

For example, the following code tells the Run Query Wizard to skip the required field
sports2000.customer.name.

Query:SetSkipValue(“sports2000.customer.name”).

DataPA Developer

144

© DataPA

Adding Required Values

AppBuilder: chQuery:AddCondition(…).

Visual Studio: Query.AddCondition(…)

Architect: Query:AddCondition(…).

Adding Required Values
Sometimes it may be necessary to programmatically add conditions to a query rather than through
the query wizard.

The AddCondition Method
The AddCondition Method allows the developer to programmatically add a condition to the query.

AppBuilder Syntax

COM-hdl-var:AddCondition(LogicalOperation,
FieldName,
Operator,
RequiredField,
Expression,
Label,
Description,
Mandatory,
OpenBrackets,
CloseBrackets).

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

LogicalOperation
A character expression that resolves to either “AND” or “OR”. Represents the logical operator that will
be applied to the condition when added to the FOR EACH statement.

FieldName
A character expression that resolves to a field name. The field name should match exactly the name
value returned from the Field object.

Operator
A character expression that resolves to valid Progress operator for the field.

RequiredField
A logical expression. If True, the condition will be created as a required field condition, otherwise the
condition will be created as a fixed value condition.
Expression

DataPA Developer

145

A character expression that resolves to a valid expression for a fixed value condition.

Label
A character expression that will be used as the label for a required field condition.

Description
A character expression that will be used as the description for a required field condition.

Mandatory
A logical expression that will determine whether a required field condition is mandatory or not.

OpenBrackets
An integer expression that equates to the number of opening brackets that should precede the
condition in the FOR EACH statement.

CloseBrackets
An integer expression that equates to the number of closing brackets that should follow the condition
in the FOR EACH statement.

For example, the following code adds a non mandatory required field value to the query:

chQuery:AddCondition(“AND”,
“sports2000.customer.custnum”,
“matches”,
TRUE,
“”,
“Customer Name”,
“Enter a string to match against customer name”,
FALSE,
0,
0).

Visual Studio Syntax

Query.AddCondition(LogicalOperation,
FieldName,
Operator,
RequiredField,
Expression,
Label,
Description,
Mandatory,
OpenBrackets,
CloseBrackets)

Query
A variable that references a valid DataPA.Query object.

LogicalOperation
A string expression that resolves to either “AND” or “OR”. Represents the logical operator that will be
applied to the condition when added to the FOR EACH statement.

FieldName
A string expression that resolves to a field name. The field name should match exactly the name value
returned from the Field object.

Operator
A string expression that resolves to valid Progress operator for the field.

DataPA Developer

146

RequiredField
A boolean expression. If True, the condition will be created as a required field condition, otherwise
the condition will be created as a fixed value condition.

Expression
A string expression that resolves to a valid expression for a fixed value condition.

Label
A string expression that will be used as the label for a required field condition.

Description
A string expression that will be used as the description for a required field condition.

Mandatory
A boolean expression that will determine whether a required field condition is mandatory or not.

OpenBrackets
An integer expression that equates to the number of opening brackets that should precede the
condition in the FOR EACH statement.

CloseBrackets
An integer expression that equates to the number of closing brackets that should follow the condition
in the FOR EACH statement.

For example, the following code adds a non mandatory required field value to the query:

Query.AddCondition(“AND”,
“sports2000.customer.custnum”,
“matches”,
TRUE,
“”,
“Customer Name”,
“Enter a string to match against customer name”,
FALSE,
0,
0)

Architect Syntax

Query:AddCondition(LogicalOperation,
FieldName,
Operator,
RequiredField,
Expression,
Label,
Description,
Mandatory,
OpenBrackets,
CloseBrackets)

Query
A variable that references a valid DataPA.Query object.

LogicalOperation
A character expression that resolves to either “AND” or “OR”. Represents the logical operator that will
be applied to the condition when added to the FOR EACH statement.

FieldName

DataPA Developer

147

A character expression that resolves to a field name. The field name should match exactly the name
value returned from the Field object.

Operator
A character expression that resolves to valid Progress operator for the field.

RequiredField
A logical expression. If True, the condition will be created as a required field condition, otherwise the
condition will be created as a fixed value condition.
Expression
A character expression that resolves to a valid expression for a fixed value condition.

Label
A character expression that will be used as the label for a required field condition.

Description
A character expression that will be used as the description for a required field condition.

Mandatory
A logical expression that will determine whether a required field condition is mandatory or not.

OpenBrackets
An integer expression that equates to the number of opening brackets that should precede the
condition in the FOR EACH statement.

CloseBrackets
An integer expression that equates to the number of closing brackets that should follow the condition
in the FOR EACH statement.

For example, the following code adds a non mandatory required field value to the query:

Query:AddCondition(“AND”,
“sports2000.customer.custnum”,
“matches”,
TRUE,
“”,
“Customer Name”,
“Enter a string to match against customer name”,
FALSE,
0,
0).

DataPA Developer

148

© DataPA

Skipping the Introduction Screen

AppBuilder: chQuery:SkipIntro = TRUE.

Visual Studio: Query.SkipIntro = TRUE

Architect: Query:SkipIntro = TRUE.

Skipping the Introduction Screen
Once all the required parameters have been set, the only user-interaction required in the run-query
wizard before the query runs is to skip past the introduction screens. If the run query process is being
handled programmatically, you may wish to remove all user-interaction in the wizard so the process is
automatic. The first step to do this is to skip the Introduction screen.

The SkipIntro property
The SkipIntro property of the query object specifies whether or not DataPA skips the introduction
screen when the query is run.

AppBuilder Syntax

COM-hdl-var:SkipIntro = expression

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

expression
A logical expression that resolves to either TRUE or FALSE. If TRUE, the run query wizard will skip the
introduction screen, otherwise the run query wizard will show the introduction screen.

For example, the following code tells DataPA to skip the run query wizards introduction screen when
a specific query is run:

chQuery:SkipIntro = TRUE.

DataPA Developer

149

Visual Studio Syntax

Query.SkipIntro = expression

Query
A variable that references a valid DataPA.Query object.

expression
A boolean expression that resolves to either TRUE or FALSE. If TRUE, the run query wizard will skip the
introduction screen, otherwise the run query wizard will show the introduction screen.

For example, the following code tells DataPA to skip the run query wizards introduction screen when
a specific query is run:

Query.SkipIntro = TRUE

Architect Syntax

Query:SkipIntro = expression

Query
A variable that references a valid DataPA.Query object.

expression
A logical expression that resolves to either TRUE or FALSE. If TRUE, the run query wizard will skip the
introduction screen, otherwise the run query wizard will show the introduction screen.

For example, the following code tells DataPA to skip the run query wizards introduction screen when
a specific query is run:

Query:SkipIntro = TRUE.

DataPA Developer

150

© DataPA

Skipping the Export Screen

AppBuilder: chQuery:SkipExport = TRUE.

Visual Studio: Query.SkipExport = TRUE

Architect: Query:SkipExport = TRUE.

Skipping the Export Screen
Once all the required parameters have been set, the only user-interaction required at the end of the
run query wizard is the export information screens. If the run query process is being handled
programmatically, you may wish to remove all user-interaction in the wizard so the process is
automatic. The last step to do this is to skip the Export screen.

The SkipExport property
The SkipExport property of the query object specifies whether or not DataPA skips the export screen
when the query is run.

AppBuilder Syntax

COM-hdl-var:SkipExport = expression

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query object.

expression
A logical expression that resolves to either TRUE or FALSE. If TRUE, the run query wizard will skip the
export screen, otherwise the run query wizard will show the export screen.

For example, the following code tells DataPA to skip the run query wizards export screen when a
specific query is run:

chQuery:SkipExport = TRUE.

DataPA Developer

151

Visual Studio Syntax

Query.SkipExport = expression

Query
A variable that references a valid DataPA.Query object.

expression
A boolean expression that resolves to either TRUE or FALSE. If TRUE, the run query wizard will skip the
export screen, otherwise the run query wizard will show the export screen.

For example, the following code tells DataPA to skip the run query wizards export screen when a
specific query is run:

Query.SkipExport = TRUE

Architect Syntax

Query:SkipExport = expression.

Query
A variable that references a valid DataPA.Query object.

expression
A logical expression that resolves to either TRUE or FALSE. If TRUE, the run query wizard will skip the
export screen, otherwise the run query wizard will show the export screen.

For example, the following code tells DataPA to skip the run query wizards export screen when a
specific query is run:

Query:SkipExport = TRUE.

DataPA Developer

152

© DataPA

DataPA Developer

Lesson 7
Setting Security Information

Setting Security Information
This lesson will teach the techniques required to automatically manage the DataPA installation and its
security automatically from the client application. The techniques use a combination of DataPA
Automation Object properties and methods to manage these tasks.

Learning Objectives
When you complete this lesson you should be able to:

 Understand the hierarchy of the DataPA client objects
 Use the code to programmatically set the DataLocation for DataPA
 Use the code to set the username and password
 Use code to set whether the user should be prompted for the username/password

Prerequisites
Before you begin this lesson you should be able to:

 Create a GUI application in the development tool you have chosen
 Use methods and properties on objects
 Understand how to set DataPA to load data files from the server using the DataLocation

DataPA Developer

153

© DataPA

Understanding DataPA Object Hierarchy

Report/Dashboard
control

Application

ClientConfig

SessionData

The ClientConfig Object
The ClientConfig object provides the core client configuration behaviour for any graphical DataPA
client application. It is this object that provides the functionality to open and save the setup from the
data location and the core security features of the DataPA client applications.

The Application Object
The DataPA Application object is described in detail in a previous lesson. It provides the functionality
to manage and run queries. Every instance of a DataPA Application object must have a ClientConfig
object, which by default it will create on initialisation. We will see later in this lesson how we can
override this default behaviour to provide a ClientConfig object with that overrides the default
behaviour.

The SessionData Object
The SessionData object is a general purpose object that allows us to set session wide variables that
can be read by any of the DataPA objects. We will see later in this lesson how we can use the
SessionData object to set a session only data location and delay the initialisation of the Application
object.

DataPA Developer

154

© DataPA

The default initialisation process

ClientConfig Object is created

The application object initialise method creates a ClientConfig object

Application object is initialised
The application object implicitly calls its own initialisation method as

part of the construction process

Application object is created
We create a DataPA Application object either explicitly, or as part of the

initialisation of a control.

The default initialisation process
If we explicitly or implicitly (as part of the initialisation routine of one of the DataPA controls) create a
DataPA Application object, the following steps occur;

1. The DataPA Application object is created.
2. The object calls an internal initialisation procedure as part of its own constructor process.
3. The initialise method of the Application object creates and initialises a ClientConfig object.

This process is efficient in terms of the amount of code we need to write, but does not give us any
control of the initialisation process. In many instances we may wish to check or change some settings,
such as applying username and password details so the login screen does not show. We need to do
this BEFORE the ClientConfig object is initialised in order to change the behaviour of the initialisation
process.

DataPA Developer

155

© DataPA

Managing the initialisation process

Application object is initialised
We call the initialise method on the Application object. This method recognises a

ClientCofig object has already been create and assigned, so no need to create one.

Application object is created
We create an application object, delaying the initialise method so we can explicitly

assign our pre-configured ClientConfig object

ClientConfig object is created
We explicitly create a ClientConfig object so we can configure its properties before

we create an application object.

Managing the initialisation process
We can modify the default initialisation process by doing the following (the steps are described in
more detail later in this lesson);

1. Explicitly create the ClientConfig object
2. Modify any properties we wish to modify before the object is initialised.
3. Create a SessionData object and set the DelayInitialise property to delay the Application

object initialise method.
4. Create the application object.
5. Assign our configured ClientConfig object to the Application object.
6. Explicitly call the Application object initialise method.

Creating a ClientConfig object
To create a ClientConfig object, use the following syntax;

AppBuilder Syntax
CREATE "DataPAClientConfig.ClientConfig" chClientConfig.

Visual Studio Syntax
ClientConfig = New DataPAClientConfig.ClientConfig

Architect Syntax
ClientConfig = NEW DataPAClientConfig.ClientConfig().

Creating a SessionData object
We will use the SessionData object to delay the initialisation of the Application object. To create a
SessionData object, use the following syntax;

AppBuilder Syntax
CREATE "DataPA.SessionData" chSessionData.

Visual Studio Syntax
SessionData = New DataPA.SessionData

Architect Syntax
SessionData = NEW DataPA.SessionDataClass().

DataPA Developer

156

Delaying the Application object Initialise method
We need to delay the call to the initialise method when we create the DataPA Application object so
we can assign our managed ClientConfig object rather than allowing the application object to create
its own. To do this we must set the DelayedRender value on a SessionData object to True before we
create the Application object. The syntax to set a value on the SessionData object is as follows;

AppBuilder Syntax
chSessionData:value("DelayInitialise") = True.

Visual Studio Syntax
SessionData.value("DelayInitialise") = True

Architect Syntax
SessionData:SetComValue("DelayInitialise", "True").

Calling the Application object initialise method
Once we have created our Application object, we must assign our ClientConfig object and then call
the initialise event. The syntax for the full example should be;

AppBuilder Syntax
DEFINE VARIABLE chClientConfig AS COM-HANDLE NO-UNDO.
DEFINE VARIABLE chSessionData AS COM-HANDLE NO-UNDO.
DEFINE VARIABLE chDataPA AS COM-HANDLE NO-UNDO.

CREATE "DataPA.SessionData" chSessionData.
chSessionData:value("DelayInitialise") = True.
CREATE "DataPAClientConfig.ClientConfig" chClientConfig.

/* Set any properties here */
CREATE "DataPA.Application" chDataPA.
chDataPA:ClientConfig = chClientConfig.
chDataPA:Initialise().

Visual Studio Syntax
Dim SessionData As New DataPA.SessionData

SessionData.value("DelayInitialise") = True
Dim ClientConfig As New DataPAClientConfig.ClientConfig

' Set any properties here
Dim DataPA As New DataPA.Application
DataPA.ClientConfig = ClientConfig
DataPA.Initialise()

Architect Syntax
DEFINE VARIABLE clientConfig AS DataPAClientConfig.ClientConfig.
DEFINE VARIABLE SessionData AS DataPA.SessionData.
DEFINE VARIABLE DataPAApplication AS DataPA.Application.

SessionData = NEW DataPA.SessionDataClass().
SessionData:SetComValue("DelayInitialise", "True").
clientConfig = NEW DataPAClientConfig.ClientConfig().

/* Set any properties here */
DataPAApplication = NEW DataPA.ApplicationClass().
DataPAApplication:ClientConfig = clientConfig.
DataPAApplication:Initialise().

DataPA Developer

157

© DataPA

Setting the Data Location

Setting the Data Location
The Data Location is used to locate and open the data files that contain the configuration for the
analytics engine (the definitions of your systems, links, lookups and subjects). It is common to set the
Data Location to a server, so the data files can be located centrally and shared rather than locally on
each client machine. To ensure the Data Location is not hard coded and can be changed to suit the
requirements of different implementations, it is preferable to set the Data Location programmatically.
This can be done in two different ways depending on your requirements, either for all sessions or just
for the current session. Both of these methods are described in detail later in this lesson.

Data Location syntax
The data location property is a string, the syntax of which determines whether the client will attempt
to read the data files from a file location, an enterprise server, an AppServer or a web server. The
syntax of the data location property for each possible location type is detailed below;

File Location
The file location syntax requires a fully qualified path to the directory that contains the data files. This
includes a trailing slash.

Syntax: [Fully Qualified Path]
Example: C:\ProgramData\DataPA\

Enterprise Server
The Enterprise Server syntax requires the server address followed by the enterprise service details.

Syntax: [Server Address]:80/DataPAServiceModel/EnterpriseService
Example: localhost:80/DataPAServiceModel/EnterpriseService

AppServer
The AppServer syntax requires the AppServer URL. This can be copied directly from the string built by
the security string.

Syntax: AppServer[DC]://<HOST>[:<PORT NUMBER>]/<APPSERVICE>
[?[username=<USERNAME>][&password=<PASSWORD>][&prompt=true]
[&appserverinfo=<APPSERVERINFO]]

Example: AppServer://localhost/sports2000?prompt=true

DataPA Developer

158

Web Server
The web server syntax simply requires the fully qualified URL.

Syntax: [Fully qualified URL]
Example: http://www.datapa.com

Setting the Data Location for all Sessions
The ClientConfig object has a Data Location property that is directly associated with the data location
configured through the security screen. This means if the data location is changed using the
ClientConfig property, the change will affect all subsequent DataPA client applications opened on the
same machine.

AppBuilder Syntax

COM-hdl-var:DataLocation

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA ClientConfig object.

For example, if we wanted to set default location we could use the code:

DEFINE VARIABLE chClientConfig AS COM-HANDLE NO-UNDO.
CREATE "DataPAClientConfig.ClientConfig" chClientConfig.
chClientConfig:DataLocation = "C:\ProgramData\DataPA\".
RELEASE OBJECT chClientConfig.

Visual Studio Syntax

ClientConfig.DataLocation

AdminObj
A variable that references a valid DataPA ClientConfig object.

For example, if we wanted to set our DataLocation to the default location we could use the code:

Dim ClientConfig As New DataPAClientConfig.ClientConfig
ClientConfig.DataLocation = "C:\ProgramData\DataPA\"

Architect Syntax

ClientConfig:DataLocation

ClientConfig
A variable that references a valid DataPA ClientConfig object.

For example, if we wanted to set our DataLocation to the default location we could use the code:

DEFINE VARIABLE clientConfig AS DataPAClientConfig.ClientConfig.
clientConfig = NEW DataPAClientConfig.ClientConfig().
clientConfig:DataLocation = “C:\ProgramData\DataPA\”.

DataPA Developer

159

Setting the Data Location for a single session
You may choose to have two completely separate configurations for the analytics engine, depending
on whether DataPA OpenAnalytics is being used as an embedded technology, or stand alone. This is
particularly useful when you wish to allow customers to create their own subjects, but prevent them
from modifying subjects used in the application.

To support this, we can set a data location property on the session data object. Any DataPA client
objects created in the same session (process) during the lifetime of this object will use the given data
location. The examples below give the syntax using the delayed initialization discussed earlier in this
chapter.

Syntax
AppBuilder Syntax

DEFINE VARIABLE chClientConfig AS COM-HANDLE NO-UNDO.
DEFINE VARIABLE chSessionData AS COM-HANDLE NO-UNDO.
DEFINE VARIABLE chDataPA AS COM-HANDLE NO-UNDO.

CREATE "DataPA.SessionData" chSessionData.
chSessionData:value("DelayInitialise") = True.
chSessionData:value("DataLocation") = "C:\ProgramData\DataPA".

CREATE "DataPAClientConfig.ClientConfig" chClientConfig.
CREATE "DataPA.Application" chDataPA.
chDataPA:ClientConfig = chClientConfig.
chDataPA:Initialise().

Visual Studio Syntax
Dim SessionData As New DataPA.SessionData

SessionData.value("DelayInitialise") = True
SessionData.value("DataLocation") = "C:\ProgramData\DataPA"
Dim ClientConfig As New DataPAClientConfig.ClientConfig

Dim DataPA As New DataPA.Application
DataPA.ClientConfig = ClientConfig
DataPA.Initialise()

Architect Syntax
DEFINE VARIABLE clientConfig AS DataPAClientConfig.ClientConfig.
DEFINE VARIABLE SessionData AS DataPA.SessionData.
DEFINE VARIABLE DataPAApplication AS DataPA.Application.

SessionData = NEW DataPA.SessionDataClass().
SessionData:SetComValue("DelayInitialise", "True").
SessionData:SetComValue("DataLocation", "C:\ProgramData\DataPA").
clientConfig = NEW DataPAClientConfig.ClientConfig().

DataPAApplication = NEW DataPA.ApplicationClass().
DataPAApplication:ClientConfig = clientConfig.
DataPAApplication:Initialise().

DataPA Developer

160

© DataPA

Setting Username and Password Programmatically

Setting Username and Password Programmatically
More often than not, any connection to an AppServer or DataPA Enterprise server will require
authentication. It is often the case that the username and password required is the same as that
provided by the user when logging in to the business application. To save the user entering their
username and password multiple times, it is good practice to apply the username and password
programmatically.

Setting Username and Password globally
There are two different situations where DataPA connects to a server and can potentially require a
username and password. If the data location is set to a DataPA Enterprise server, or AppServer and
the server requires authentication, a username and password is required when the ClientConfig
object is initialised. If a connection defined within a system requires a username and password,
DataPA OpenAnalytics will prompt for a username and password when a connection is required.

If there is only a single server that needs to be authenticated against, or the username and password
for all servers is consistent, we can use the ClientConfig object to set the username and password and
remember it. This method behaves exactly the same as providing the username and password and
checking the Always use these details in this session check box. That is, every time DataPA would
prompt for a username and password, it will try the saved details and only show the login screen if
these details fail.

The examples below shows how to use the username, password and
UsePreviousUsernameAndPasswordSet properties with the delayed initialisation method described
earlier in this lesson.

DataPA Developer

161

Syntax
AppBuilder Syntax

DEFINE VARIABLE chClientConfig AS COM-HANDLE NO-UNDO.
DEFINE VARIABLE chSessionData AS COM-HANDLE NO-UNDO.
DEFINE VARIABLE chDataPA AS COM-HANDLE NO-UNDO.

CREATE "DataPA.SessionData" chSessionData.
chSessionData:value("DelayInitialise") = True.
CREATE "DataPAClientConfig.ClientConfig" chClientConfig.

chClientConfig:UserName = "Guest".
chClientConfig:Password = "openanalytics".
chClientConfig:UsePreviousUsernameAndPasswordSet = True.

CREATE "DataPA.Application" chDataPA.
chDataPA:ClientConfig = chClientConfig.
chDataPA:Initialise().

Visual Studio Syntax
Dim SessionData As New DataPA.SessionData

SessionData.value("DelayInitialise") = True
Dim ClientConfig As New DataPAClientConfig.ClientConfig

ClientConfig.UserName = "Guest"
ClientConfig.Password = "openanalytics"
ClientConfig.UsePreviousUsernameAndPasswordSet = True

Dim DataPA As New DataPA.Application
DataPA.ClientConfig = ClientConfig
DataPA.Initialise()

Architect Syntax
DEFINE VARIABLE clientConfig AS DataPAClientConfig.ClientConfig.
DEFINE VARIABLE SessionData AS DataPA.SessionData.
DEFINE VARIABLE DataPAApplication AS DataPA.Application.

SessionData = NEW DataPA.SessionDataClass().
SessionData:SetComValue("DelayInitialise", "True").
clientConfig = NEW DataPAClientConfig.ClientConfig().

clientConfig:UserName = "Guest".
clientConfig:Password = "openanalytics".
clientConfig:UsePreviousUsernameAndPasswordSet = True.

DataPAApplication = NEW DataPA.ApplicationClass().
DataPAApplication:ClientConfig = clientConfig.
DataPAApplication:Initialise().

DataPA Developer

162

Setting Username and Password for individual systems
In certain circumstances, different systems configured within the analytics engine may require
different authentication details. In these circumstances we can use the systems collection to
configure the authentication details for each system independently.

The Systems Collection
DataPA represents AppServer connections with systems. Systems are accessible programmatically
from the Systems property on the DataPA.Application object. The Systems property returns a
collection of all the Systems available for this instance of DataPA.

AppBuilder Syntax

COM-hdl-var:Systems

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application object.

The Systems property returns a COM-Handle that represents the Systems collection.

Visual Studio Syntax

Application.Systems

Application
A variable that references a valid DataPA.Application object.

The Systems property returns a handle that represents the Systems collection.

DataPA Developer

163

Architect Syntax

Application:Systems().

Application
A variable that references a valid DataPA.Application object.

The Systems property returns a handle that represents the Systems collection.

The Systems collection has one property and one method that allow us to set and retrieve
information about the systems. First is the Count property that retrieves the number of systems
defined for this instance of DataPA.

AppBuilder Syntax

COM-hdl-var:Count

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Application.Systems object.

To retrieve individual systems, the systems object has an Item method. The Item method has the
following syntax:

COM-hdl-var:item(expression, findstring)

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA.Query.RequiredFields object.

expression
An integer expression that resolves to the position of the system in the list of systems.

findstring
A string expression that resolves to a valid find string expression.

The Item method returns a COM-handle that represents a DataPA.Fields object.

For example, the following code displays the name of each system defined for the instance of DataPA:

DEFINE VARIABLE chSystem AS COM-HANDLE NO-UNDO.
DEFINE VARIABLE ix AS INTEGER NO-UNDO.

REPEAT WITH ix = 1 TO chDataPA:Systems:COUNT.
chSystem = chDataPA:Systems:ITEM(ix, "").
MESSAGE chSystem:NAME

VIEW-AS ALERT-BOX INFO BUTTONS OK.
END.

The following code retrieves the com handle for the sports2000 system:

chSystem = chDataPA:Systems:ITEM(,"cName='sports2000'").

DataPA Developer

164

Visual Studio Syntax

Systems.Count

Systems
A variable that references a valid DataPA.Application.Systems object.

To retrieve individual systems, the systems object has an Item method. The Item method has the
following syntax:

Systems.item(expression, findstring)

Systems
A variable that references a valid DataPA.Systems object.

expression
An integer expression that resolves to the position of the system in the list of systems.

findstring
A string expression that resolves to a valid find string expression.

The Item method returns a handle that represents a DataPA.Fields object.

For example, the following code displays the name of each system defined for the instance of DataPA:

dim System As DataPA.System
dim ix As Integer

for ix = 1 TO Systems.Count
System = Application.Systems.ITEM(ix, "")
msgbox System.NAME

next ix

The following code retrieves the handle for the sports2000 system:

System = Application.Systems.ITEM(,"cName='sports2000'")

Architect Syntax

Systems:Count().

Systems
A variable that references a valid DataPA.Application.Systems object.

To retrieve individual systems, the systems object has an Item method. The Item method has the
following syntax:

Systems:item(expression, findstring).

Systems
A variable that references a valid DataPA.Systems object.

expression
An integer expression that resolves to the position of the system in the list of systems. Pass “?” is not
being used.

DataPA Developer

165

findstring
A string expression that resolves to a valid find string expression. Pass “?” is not being used.

The Item method returns a handle that represents a DataPA.Fields object.

For example, the following code displays the name of each system defined for the instance of DataPA:

DEFINE PRIVATE VARIABLE System AS DataPA.System NO-UNDO.
DEFINE PRIVATE VARIABLE ix AS INTEGER NO-UNDO.

REPEAT WITH ix = 1 TO Application:Systems:COUNT():
System = Application:Systems:ITEM(ix,"?").
MESSAGE System:NAME

VIEW-AS ALERT-BOX INFO BUTTONS OK.
END.

The following code retrieves the handle for the sports2000 system:

System = Application:Systems:ITEM(“?”,"cName='sports2000'").

DataPA Developer

166

The Username Property
The Username property on the system object allows the username to be set programmatically.

AppBuilder Syntax

COM-hdl-var:Username

COM-hdl-var
A COM-HANDLE variable that references a valid DataPA system object.

For example, the code to set the username for the sports2000 system to Nick could be:

chSystem = chDataPA:Systems:ITEM(,"cName='sports2000'").
chSystem:Username = “Nick”.

Visual Studio Syntax

System.Username

System
A variable that references a valid DataPA system object.

For example, the code to set the username for the sports2000 system to Nick could be:

System = Application.Systems.ITEM(,"cName='sports2000'")
System.Username = “Nick”

Architect Syntax

System:Username().

System
A variable that references a valid DataPA system object.

For example, the code to set the username for the sports2000 system to Nick could be:

System = Application:Systems:ITEM(“?”,"cName='sports2000'").
System:Username = “Nick”.

DataPA Developer

167

The Password Property
The Password property on the system object allows the password be to set programmatically.

AppBuilder Syntax

COM-hdl-var:Password

COM-hdl-var
A COM-HANDLE variable that references a valid system object.

For example, the code to set the username for the sports2000 system to Nick and the password to
“1234” could be:

chSystem = chDataPA:Systems:ITEM(,"cName='sports2000'").
chSystem:Username = “Nick”.
chSystem:Password = “1234”.

Visual Studio Syntax

System.Password

System
A variable that references a valid system object.

For example, the code to set the username for the sports2000 system to Nick and the password to
“1234” could be:

System = Application.Systems.ITEM(,"cName='sports2000'")
System.Username = “Nick”
System.Password = “1234”

Architect Syntax

System:Password.

System
A variable that references a valid system object.

For example, the code to set the username for the sports2000 system to Nick and the password to
“1234” could be:

System = Application:Systems:ITEM(“?”,"cName='sports2000'").
System:Username = “Nick”.
System:Password = “1234”.

DataPA Developer

168

The PromptUser property
The PromptUser property on the system object determines whether or not the user is prompted for a
username and password when DataPA connects to the AppServer.

AppBuilder Syntax

COM-hdl-var:PromptUser

COM-hdl-var
A COM-HANDLE variable that references a valid system object.

For example, the code to set the username for the sports2000 system to Nick and the password to
“1234” and to set the PromptUser property to false so the user is not prompted could be:

chSystem = chDataPA:Systems:ITEM(,"cName='sports2000'").
chSystem:Username = “Nick”.
chSystem:Password = “1234”.
chSystem:PromptUser = FALSE.

Visual Studio Syntax

System.PromptUser

System
A variable that references a valid system object.

For example, the code to set the username for the sports2000 system to Nick and the password to
“1234” and to set the PromptUser property to false so the user is not prompted could be:

System = Application.Systems.ITEM(,"cName='sports2000'")
System.Username = “Nick”
System.Password = “1234”
System.PromptUser = FALSE

Architect Syntax

System:PromptUser.

System
A variable that references a valid system object.

For example, the code to set the username for the sports2000 system to Nick and the password to
“1234” and to set the PromptUser property to false so the user is not prompted could be:

System = Application:Systems:ITEM(“?”,"cName='sports2000'").
System:Username = “Nick”.
System:Password = “1234”.
System:PromptUser = FALSE.

DataPA Developer

169

© DataPA

DataPA Developer

Lesson 8
Using DataPA Application Events

Using DataPA Application Events
This lesson will teach the how to use DataPA Application events from your third party application.

Learning Objectives
When you complete this lesson you should be able to:

 Add event handlers to you application to respond to the events raised by the DataPA
Application objects.

Prerequisites
Before you begin this lesson you should be able to:

 Create an application in the development tool you have chosen
 Use the DataPA Reports control and DataPA Application objects in the application you have

created.

DataPA Developer

170

© DataPA

Responding to Application Object Events

Responding to Application Object Events in the AppBuilder
Progress handles Application Object events using event procedures. An event procedure is a standard
Progress internal procedure that serves as an event handler for ActiveX objects. The Application
objects will often pass one or more parameters that must be handled by the event procedure. These
parameters are defined as parameters in the event procedure. Progress identifies an event procedure
from the construction of its name. This is the only syntactic feature that distinguishes Progress
internal procedures as an event procedure.

Creating Event Procedures in the AppBuilder
By default the events are turned off for COM objects in the AppBuilder. They must be enabled for
each COM object individually using a special command in the Progress ABL.

So consider the case where a COM handle to a DataPA Application object is stored in the variable
chDataPA. To enable events for this Application object you would use the method below and pass the
method an identifying name which for the case below we have used “DataPA”:

chDataPA:ENABLE-EVENTS("DataPA").

Having enabled the events follow these steps to create an event procedure in the AppBuilder:

 First you need to identify if the events procedure will require any parameters. The best way
to do this is to use a tool that is included in the Progress installation. This is called the COM
Object Viewer and will probably not be on the Start menu under Progress. If can be found in
the bin folder of your Progress installation and is called proobjvw.exe. It’s icon is . This
tool will allow you to browse to the COM object (for example DataPA.dll) and see the
properties, methods and events. The good thing about it is that it will provide the correct
Progress syntax for you. For example for the DataAvailable event of the DataPA Application
object:

PROCEDURE <event-proc-prefix>.DataAvailable :

END PROCEDURE.

DataPA Developer

171

An example with some parameters passed in the event would be the RunQuery event of the
DataPA Application object:

PROCEDURE <event-proc-prefix>.RunQuery :
DEFINE INPUT-OUTPUT PARAMETER Query AS COM-HANDLE.
DEFINE INPUT-OUTPUT PARAMETER Cancel AS LOGICAL.

END PROCEDURE.

NB: The <event-proc-prefix> will be the name you gave when calling the ENABLE-EVENTS
method to enable events on the COM object.

 Insert the code from the COM Object Viewer into your AppBuilder program or window and
program the logic that you want to before on execution of the event.

DataPA Developer

172

Responding to Events in Visual Studio
Visual Studio handles Application object events using standard .NET event procedures. The
application objects will often pass one or more parameters that must be handled by the event
procedure. These parameters are defined as parameters in the event procedure. Visual Studio
identifies an event procedure from handler that is assigned to it for example (Handles
PAApp.DataAvailable).

Creating Event Procedures in Visual Studio
Follow these steps to create an event procedure in Visual Studio:

 Ensure that the variable defining the Application object is defined with the WithEvents
option

 Select the View Code option for the form
 Select the Application instance from the object drop down
 Select the event from the drop down list of events beside it

Visual Studio will create an appropriate event procedure with the correct handler assigned.

DataPA Developer

173

Responding to Events in Architect
Unlike Visual Studio, OpenEdge Architect does not support events for objects which do not have a
fixed standard interface of Sender and EventArgs. This means that the events generated by the
DataPA Application objects cannot be picked up directly by Architect.

Creating Event Procedures in Architect
In order to work round this limitation in OpenEdge Architect a supplementary assembly has been
created by DataPA called DataPAEventHandlerLib.dll. This assembly is installed in the GAC and picks
up events from the DataPA Application objects and generates them in an OpenEdge Architect friendly
form.

Finally, select the DataPAEventHandlerLib from the list and click OK. The DataPAEventHandlerLib
assembly to has now been added to your project.

Once the DataPAEventHandlerLib assembly has been added to your project, you need to create one
or more instances of the Event handler. There are a number of Event handler types which allow you
access to the events of their respective DataPA Application objects. These are listed below.

DataPA Object DataPAEventHandlerLib class

Application DataPAEventHandlerLib.Application

PAConnection DataPAEventHandlerLib.PAConnection

Query DataPAEventHandlerLib.Query

Security DataPAEventHandlerLib.Security

To reference the DataPAEventHandlerLib assembly,
expand your project node in the treeview on the right
hand side of Architect, select the Referenced
Assemblies node and press the right mouse button.
Select the Add Assembly Reference and you will be
presented with a list of assemblies available on your
machine.

DataPA Developer

174

Once created, you need to assign the Event Handler object to the object it is going to expose the
events of. The following table gives examples on how to do this with each of the event handler
objects.

DataPA Object DataPAEventHandlerLib Property

Application PAAppEvent:Application = PAApp.

Where:
PAApp is the DataPA Application object accessed from the Reports

control.
PAAppEvent is the instance of the DataPAEventHandlerLib.Application
class created

PAConnection PAConEvent:PAConnection = PAConnection.

Where:
PAConnection is the DataPA Connection object accessed from the

DataPA Application object.
PAConEvent is the instance of the DataPAEventHandlerLib.PAConnection
class created

Query PAQueryEvent:Query = PAQuery.

Where:
PAQuery is the DataPA Query object accessed from the DataPA

Application object.
PAQueryEvent is the instance of the DataPAEventHandlerLib.Query class
created

Security PASecEvent:Security = PASecurity.

Where:
PASecurity is the DataPA Security object accessed from the DataPA

Security object.
PASecEvent is the instance of the DataPAEventHandlerLib.Security class
created

We now need to define and reference a procedure to handle each required event of the
DataPAEventHandlerLib assembly. Architect enables an event handler procedure using the subscribe
statement and this must be explicitly called to route the event to the event handler procedure. For
example, to assign an event handler procedure for the DataAvailable event we would use the
command below:

PAAppEvent:DataAvailable:Subscribe(DataAvailableHandler).

Where:
DataAvailableHandler is the event handler procedure in your Architect class.
PAAppEvent is the instance of the DataPAEventHandlerLib.Application class created.

DataPA Developer

175

Finally we need to create the event handler procedure. The following example shows an event
handler procedure that responds to the DataAvailable event.

METHOD PRIVATE VOID dataavailablehandler
(INPUT sender AS System.Object, INPUT e AS System.EventArgs):
/* Your event logic */
RETURN.

END METHOD.

The following example shows how to create a DataPAEventHandlerLib instance to hook into the
DataAvailable event of a DataPA Application object (PAApp) and set a handler for that DataAvailable
event:

DEFINE PRIVATE VARIABLE PAAppEvent AS DataPAEventHandler.Application.
PAAppEvent = NEW DataPAEventHandler.Application().
PAAppEvent:Application = PAApp.
PAAppEvent:DataAvailable:Subscribe(DataAvailableHandler).

METHOD PRIVATE VOID dataavailablehandler
(INPUT sender AS System.Object, INPUT e AS System.EventArgs):
/* Your event logic */
RETURN.

END METHOD.

DataPA Developer

176

© DataPA

Application Object Events

Introduction
The DataPA Application objects provide events to allow the developer to respond to changes in the
state of each of these objects.

DataPA Application Object Events
These events are listed in the table below:

DataPA Object Event Name Parameters Definition & Usage

Application DataAvailable none This event is fired when data is
available after the running of a
query. This can be used to tell
when a query has completed.

Application QueryOpened Query (Query) This event is fired when a query is
opened and the Query object is
passed in the Query parameter of
the event.

Application QueryClosed None This event is fired when a query is
closed.

Application CancelQueryWizard None This event fires when the Query
Wizard is cancelled.

Application CancelLinkWizard None This event fires when the Link
Wizard is cancelled.

Application RunQuery Query (Query)
Cancel (Boolean)

This event fires when a Query is
about to be run. The parameters
are the Query object of the Query
that is about to be run and a
Cancel flag that allows the run of
the Query to be cancelled by
setting the Cancel flag to TRUE.

DataPA Developer

177

DataPA Object Event Name Parameters Definition & Usage

Application SetupRefreshed None This event fires when the DataPA
Setup is refreshed. This means
that the configuration
information has been read and
may have changed.

Application CloseQueryRequest paResponse This event fires when a query is
about to close. The parameter
passed back is paResponse and
has the following values:

paNoResponse = 0
paUserRespondedNoClose = 1
paUserRespondedOKClosed = 2

Application LicenseChanged none This event fires when the license
that is used within DataPA
changes.

Application SlientSet Silent (Boolean) This event fires when the Silent
property of the Application
object has been changed. The
changed value is passed in the
bSilent parameter.

Application QueryAlive Cancel (Boolean) This event fires every second
when a query is being run. This
allows the programmer to
perform so action such as
updating a progress bar or
changing an animation. The
Cancel parameter allows the
programmer to cancel a running
query if required.

PAConnection BeforeDisconnect bCancel (Boolean) This event fires before the
AppServer is disconnected. The
bCancel parameter allows the
programmer to cancel this
disconnect action if required.

PAConnection AfterDisconnect None This event fires after the
AppServer is disconnected.

PAConnection BeforeConnect bCancel (Boolean) This event fires before the
AppServer is connected. The
bCancel parameter allows the
programmer to cancel this
connect action if required.

PAConnection AfterConnect None This event fires after the
AppServer is connected.

DataPA Developer

178

DataPA Object Event Name Parameters Definition & Usage

PAConnection LoginInformationRequest LoginInfo
(LoginInfoEventArgs)

This event fires when the user is
going to be presented with the
DataPA Login screen and be
asked to provide credentials to
connect to the AppServer with.
The parameter LoginInfo contains
an instance of the
LoginInfoEventArgs object which
provides details of the user login
information. This allows the
programmer to override the login
screen and provide the login
details programmatically.

Query CancelRunQuery None This event fires when the query
that is being run is cancelled.

Security RequestServerSecData None This event fires when DataPA
makes a request for Security
information from the AppServer.
This can only occur when the
data location is setup to be an
AppServer.

Security LicenseChanged None This event fires when the license
that is used with DataPA changes.

DataPA Developer

179

© DataPA

DataPA Developer

Lesson 9
Using DataPA Enterprise

Using DataPA Enterprise
This lesson will teach the how to use DataPA Enterprise from your third party application.

Learning Objectives
When you complete this lesson you should be able to:

 Embed dashboards, reports and queries in your web application
 Pass authentication details to DataPA Enterprise from your web application.
 Pass parameters to dashboards, reports and queries from your web application.

Prerequisites
Before you begin this lesson you should be able to:

 Create an application in the development tool you have chosen
 Execute a URL string from your application
 Use iframes to embed 3rd party content in your chosen application.

DataPA Developer

180

© DataPA

Remote Client

Introducing the DataPA Web Application

Web Server

Dashboard,
Reports

& Queries

DataPA
Setup Data

IIS WebServer

DataPA
.NET Web
Agents

Database Server

Database(s)

AppServer

DataPA.pl

Business Logic

Web Browser

Mobile Device

Introducing the DataPA Web Application
The DataPA Web Application, a component of DataPA Enterprise, is a Web Application that allows
business users to run dashboard, reports and queries across a wide area network or the Internet,
using any standard web browser. Based on Microsoft ASP.NET technology, the DataPA Web
Application can be hosted on any compatible IIS Web Server, and connects to your database(s) and
runs queries via the AppServer. The Web Application is designed to allow content to be embedded
into 3rd party applications by rendering it independently in a browser, or as part of another we page in
an iFrame.

DataPA Web Application Architecture
To refresh a dashboard, report or query using the DataPA Web Application three key components are
required. These components are usually distinguished by the physical machine on which they reside
(although all three could reside on a single machine, or any combination thereof, and the database
server could reside across many machines). The three components are the Database server, the Web
Server and the Remote Client, and will be described in detail in the following sections.

The Database Server
The database server comprises of the database (or databases) and a Progress AppServer configured
for DataPA. With the exception of an optional business logic procedure to filter reports for the web
front end, described in the DataPA Administration course, the AppServer required for the DataPA
Web Application is configured in exactly the same way as the AppServer for the standard DataPA
applications. Indeed, it is often the case that a single AppServer will service both standard and web
DataPA users.

The Web Server
The web server comprises of a Microsoft Internet Information Server, with a configured web server,
running the DataPA ASP.NET web application. The dashboard, reports, queries and setup data that is
required to run these reports should reside on this server. Each Agent in the DataPA ASP.NET Web
Application is an instance of DataPA that services client requests, has its own connection to the
AppServer and is capable of rendering dashboards, reports and queries for web and mobile devices

The Remote Client
The Remote Client consists of any machine with a browser that supports JavaScript and HTML5 or a
mobile device with the relevant DataPA Mobile app installed.

DataPA Developer

181

© DataPA

Embedding content in your web application

Embedding content in your web application
The web application component of DataPA Enterprise is designed to allow content to be embedded
into 3rd party applications. As such, a simple mechanism is provided to allow developers to obtain the
required URL to render content independently in a browser, or as part of another we page in an
iFrame.

Obtaining the URL to embed content
Follow these steps to obtain the URL for a dashboard;

1. Open the DataPA Enterprise Dashboard client application.
2. From the Application Settings ribbon tab, select Manage Published.
3. Select to the dashboard, report or query you wish to embed in the treeview and press the

right mouse button.
4. Select Copy Enterprise URL to Clipboard.

If your implementation of DataPA Enterprise requires authentication, the URL provided will be
suffixed with the following;

&autoLogin=True&username=[Username]&password=[Password]

The username and password will need to be passed in the request, otherwise the application will
redirect the user to the login screen. However, these value pairs are included for information only. In
reality, the application will not accept the username and password in the URL (GET), they must be
passed in the message body (POST). This ensures user login details are encrypted over a secure
network and never passed as clear text.

DataPA Developer

182

© DataPA

Passing Parameters to DataPA Enterprise

Passing Parameters to DataPA Enterprise
You may wish to pass a value from your web application to DataPA Enterprise to filter the data shown
in a dashboard before it is rendered. The steps to achieve this can be broken down into the following
tasks, which will be described in detail in later in the lesson;

1. Create a dashboard with at least one required field query parameter.
2. Remove the control panel objects that provide the values for the required fields.
3. Set the query to refresh on open.
4. Publish the dashboard.
5. From the Manage Published screen, copy the URL and substitute the parameter and security

parameters.
6. Add a hyperlink or iFrame definition in your web application to open the URL.

Managing Query Parameters
By default query parameters are added to a dashboard as a
control panel object. The parameter values used to filter the
query when it is refreshed are taken from these control panel
objects, and the queries are refreshed when the user enters or
selects a different value in this control.
However, in this case we want to provide the query parameter
values from the third party web application, rather than the user controlling these values from an
object on the dashboard.

Providing Query Parameters Values from an Application
When a query in a dashboard is refreshed by the web application it checks if there is a valid control
panel object for each required field in the query. For each required field that does not have a valid
control panel object, the web application attempts to retrieve the query parameter value from the
URL.

Deleting Control Panel Objects
Follow these steps to remove control panel objects that provide query parameter values from the
dashboard.

1. Open the dashboard in the DataPA Enterprise Dashboard application.
2. Double click on the control panel in the dashboard to open the Control Panel dialog box.
3. Select the control panel object in the control panel.
4. Select the Delete button in the ribbon.
5. Press OK

DataPA Developer

183

6. Save the dashboard.

Set the query to refresh on open
To ensure the data in the dashboard is refreshed before it is opened, we must specify that the
dashboard should be refreshed on open. Follow these steps to achieve this;

1. With the dashboard open in the DataPA Enterprise Dashboard application select Manage
Schedule from the Queries group on the Edit Dashboard tab of the ribbon.

2. Ensure the Refresh query when dashboard is opened option is checked for the query with the
required field.

Publish the dashboard
With the dashboard open in the DataPA Enterprise Dashboard application, select FilePublish. You
will receive a message warning that the dashboard will not be available to the mobile Apps, and can
only be viewed in the web if the required value is passed in the URL;

Obtaining the URL to embed content
Follow these steps to obtain the URL for a dashboard;

1. Open the DataPA Enterprise Dashboard client application.
2. From the Application Settings ribbon tab, select Manage Published.
3. Select to the dashboard, report or query you wish to embed in the treeview and press the

right mouse button.
4. Select Copy Enterprise URL to Clipboard.

Along with the authentication details, the URL will also contain URL value pairs for any required field
parameters. For instance (http://jsfiddle.net/pg7Lap3h/);

http://enterprise.datapa.com/DataPA/Dashboard.aspx?ID=5163daee-0222-4529-8074-
0734fe3505d2&CustomerNumber=[VALUE]

In this example, we would replace the trailing [VALUE] with a value. For instance;

http://enterprise.datapa.com/DataPA/Dashboard.aspx?ID=5163daee-0222-4529-8074-
0734fe3505d2&CustomerNumber=1

